风机的振动噪声对船舶舱室噪声的影响日益突出,为了更全面地掌握船用风机的振动噪声特性,采用实测的方式,对不同类型和不同流量范围的风机开展了振动噪声特性试验研究。实测数据表明,风机振动频谱以一倍及其多倍频为主,振动最大的频率与基频一致,水平、垂直方向振动大于轴向振动,机脚加速度总级在120~160 dB;风机噪声与流量、结构形式、转速和振动等均有关;风机噪声是一个稳态噪声,在中高频较宽频段上都呈现幅值较高的特性,噪声总级在80~115 dB(A);紊流噪声对离心风机高频段的影响较轴流风机大;对舒适性要求较高的舱室,应对风机采取相应的减振降噪措施。以上结论可指导风机的选型,为船舶舱室的仿真预报和减振降噪设计提供更为准确的输入,对提高船舶舒适性具有重要意义。
The vibration noise of the fan on the ship cabin noise impact was increasingly prominent, in order to more comprehensive grasp of the vibration noise characteristics of the marine fan, experimental studies on vibration and noise characteristics of different types of fans with different flow ranges were carried out. The measured data showed that the vibration spectrum of the fan was dominated by one-fold and its multi-octave frequencies. The frequency of maximum vibration was consistent with the fundamental frequency. Horizontal and vertical vibrations were greater than axial vibrations. The acceleration level of the foot was between 120~160 dB. Fan noise was related to flow rate, structural form, speed and vibration. Fan noise was a steady state noise, with high amplitude in the middle and high frequency wider frequency band. The noise level was in the range of 80~115 dB (A). Compared to axial fans, turbulent noise had a greater impact on the high frequency band of centrifugal fans. Appropriate vibration and noise reduction measures should be taken for the fans, if cabins had high comfort requirements. The above conclusions could guide the selection of fans and provide more accurate inputs for the simulation prediction and vibration and noise reduction design of ship compartments, which was of great significance to improve the comfort of ships.
2025,47(9): 27-32 收稿日期:2024-6-26
DOI:10.3404/j.issn.1672-7649.2025.09.005
分类号:U664.5+1;TB533+.1
作者简介:刘媛(1991-),女,硕士,高级工程师,研究方向为船舶振动噪声控制
参考文献:
[1] 孔闯. 低压轴流风机叶片形状气动性能优化与降噪研究[D]. 杭州:浙江大学, 2022.
[2] 李磊. 叶顶间隙对轴流通风机内部非定常流动及气动噪声特性影响[D]. 杭州: 浙江理工大学, 2023.
[3] 叶学民, 张建坤, 李春曦. 叶顶形状对轴流风机气动噪声影响的数值研究[J]. 动力工程学报, 2017, 37(7): 558-568.
[4] 孙丽慧. 双级动叶可调轴流风机气动噪声及振动特性的模拟研究[D]. 济南: 山东大学, 2022.
[5] 熊毅. 多翼离心风机气动性能与噪声优化[D]. 南昌:江西理工大学, 2022.
[6] 崔文豪. 基于叶片载荷分布的离心风机气动性能优化及噪声特性分析[D]. 西安: 西安理工大学, 2023.
[7] 林康, 沈承, 王斌, 等. 某离心风机气动噪声计算与控制研究[J]. 噪声与振动控制, 2023, 43(6): 24-30+37.
[8] 满超, 周红, 罗乐, 等. 离心风机叶轮气动性能及噪声优化研究[J]. 风机技术, 2022, 64(S1): 17-21.
[9] 陈雪, 李强. 离心式通风机声源降噪分析及研究[J]. 农村牧区机械化, 2011(1): 43-44.
[10] 谭竞男, 王存岩, 汪龙腾, 等. 仿鸟翼结构叶片的降噪研究进展[J]. 风机技术, 2022, 64(6): 74-80.
[11] 乐美鑫, 刘媛, 蔡晓涛. 科考船机舱风机室噪声控制设计[J]. 船舶工程, 2021, 43(9): 11-14+58.
[12] 赵军, 刘媛, 于胜, 等. “东方红3”船机舱风机房噪声治理[J]. 柴油机, 2020, 42(2): 57-60.
[13] 李亚. 离心风机振动噪声预报与控制技术研究[D]. 北京: 中国舰船研究院, 2018.
[14] 马大猷. 噪声与振动控制工程手册[M]. 北京: 机械工业出版社, 2002.
[15] 黄伟稀, 何涛, 郝夏影, 等. 风机管道声学测试中的影响因素分析[J]. 振动与冲击, 2021, 40(12): 31-37.