基于流体—固体—声学联合数值仿真方法探究了纵缝式开孔平板水动力噪声特性。以典型纵缝式开孔平板为研究对象,采用流体大涡模拟、声学广义FW-H方程和流激结构振声理论,分析了纵缝式开孔平板表面脉动载荷、流噪声和流激振动噪声水平,并确定水动力噪声主导分量。分析结果表明,在3 m/s流速下,四周刚固的纵缝式开孔平板表面脉动载荷和流噪声水平整体上随着频率的增大而逐渐减小,开孔位置后侧的脉动压力及流激噪声显著高于其余位置,流噪声是纵缝式开孔平板水动力噪声的主要成分。
Based on flow-structure-acoustic numerical simulation method, the characteristics of hydrodynamic noise of steel plate with longitudinal water holes are explored. Typical plate with longitudinal water holes is taken as research object, large eddy simulation, acoustic FW-H equation, and solving theory of flow-excited vibration and noise are used. By these methods, surface fluctuating load, flow noise and flow-induced structural noise of plate with holes are analyzed, and dominant component of hydrodynamic noise is specified. Aiming at plate with longitudinal holes with rigid surrounding at the flow rate of 3m/s, the analysis results show that, with the increasement of frequency, surface fluctuating load and flow noise level decrease gradually. Fluctuating pressure and flow-excited noise at the rear side of the opening position are significantly higher than those at other positions. Flow noise is specified to be the dominant component of hydrodynamic noise of plate with holes.
2025,47(9): 33-39 收稿日期:2024-7-11
DOI:10.3404/j.issn.1672-7649.2025.09.006
分类号:U663
作者简介:邹通达(1998-),男,硕士,助理工程师,研究方向为船舶结构振动噪声
参考文献:
[1] ROCKWELL D. Oscillations of impinging shear layers[J]. AIAA journal, 1983, 21(5): 645-664.
[2] ROCKWELL D, NAUDASCHER E. Self-sustained oscillations of impinging free shear layers[J]. Annual Review of Fluid Mechanics, 1979, 11(1): 67-94.
[3] ROCKWELL D, NAUDASCHER E. Self-sustaining oscillations of flow past cavities[J]. Asme Transactions Journal of Fluids Engineering, 1978, 100(2): 152–165.
[4] 李荣华, 楼京俊, 朱石坚. 局部开孔深腔流噪声发声机理研究[J]. 舰船科学技术, 2019, 41(1): 26-32.
LI R H, LOU J J, ZHU S J. Research on flow noise mechanism of the deep cavity with local hole[J]. Ship Science and Technology, 2019, 41(1): 26-32.
[5] 张楠, 李亚, 王志鹏, 等. 基于LES与Powell涡声理论的孔腔流激噪声数值模拟研究[J]. 船舶力学, 2015, 19(11): 1393-1408.
ZHANG N, LI Y, WANG Z P, et al. Numerical simulation on the flow induced noise of cavity by LES and Powell vortex sound theory[J]. Journal of Ship Mechanics, 2015, 19(11): 1393-1408.
[6] 张楠, 沈泓萃, 姚惠之, 等. 孔穴流激噪声的计算与验证研究[J]. 船舶力学, 2008(5): 799-805.
ZHANG N, SHEN H C, YAO H Z, et al. Validation and calculation of flow-induced noise of cavity[J]. Journal of Ship Mechanics, 2008(5): 799-805.
[7] 张楠, 沈泓萃, 朱锡清, 等. 三维孔腔流激噪声的大涡模拟与声学类比预报与验证研究[J]. 船舶力学, 2010, 14(Z1): 181-190.
ZHANG N, SHEN H C, ZHU X Q, et al. Validation and prediction of flow induced noise of 3-dimensional cavity with large eddy simulation and acoustic analogy[J]. Journal of Ship Mechanics, 2010, 14(Z1): 181-190.
[8] 袁国清. 水下开孔腔体流噪声机理研究[D]. 上海:上海交通大学, 2015.
[9] 陈钊. 水下开口弹性空腔振动及声辐射特性研究[D]. 武汉:华中科技大学, 2019.
[10] 徐俊, 唐科范, 张旭. 基于数值模拟的孔腔水动噪声机理及其控制研究[J]. 水动力学研究与进展A辑, 2014, 29(5): 618-629.
XU J, TANG K F, ZHANG X. Study on mechanism and reduction of hydro-acoustical noise induced by flow over an open cavity based on numerical simulation[J]. Chinese Journal of Hydrodynamics(A), 2014, 29(5): 618-629.
[11] 耿冬寒, 刘正先. 大涡模拟-Lighthill等效声源法的空腔水动噪声预测[J]. 哈尔滨工程大学学报, 2010, 31(2): 182-187.
GENG D H, LIU Z X. Predicting cavity hydrodynamic noise using a hybrid large eddy simulation-Lighthill’s equivalent acoustic source method.[J]. Journal of Harbin Engineering University, 2010, 31(2): 182-187.
[12] 胡昊明, 崔洪宇. 流激带格栅孔腔结构水下声辐射性能分析[C]//第十八届船舶水下噪声学术讨论会, 2021.
HU H M, CUI H Y. Analysis of underwater acoustic radiation performance of flow excited cavity with grilles[C]//The 18th Symposium on Underwater Noise of Ships, 2021.
[13] 汤渭霖, 俞孟萨, 王斌. 水动力噪声理论[M]. 北京:科学出版社, 2019.
[14] 高星钰. 声呐罩结构流激振动及声学性能分析[D]. 镇江:江苏科技大学, 2022.
[15] 王洪富. 湍流脉动诱发水下航行器振动声辐射研究[D]. 哈尔滨:哈尔滨工程大学, 2022.
[16] LAFON P, CAILLAUD S, DEVOS J, et al. Aeroacoustical coupling in a ducted shallow cavity and fluid/structure effects on a steam line[J]. Journal of Fluids and Structures, 2003, 18(6): 695-713.