液舱晃荡是浮式液化天然气生产与储卸装置(FLNG)在海上作业过程中可能遇到的重要问题,是设计和运行中必须考虑的关键因素。采用数值模拟方法,探讨Mark III薄膜型FLNG装载LNG舱晃荡载荷特征及分布规律。利用势流理论,进行了耐波性和液舱晃荡耦合分析,计算了不同浪向、频率和液舱装载率下船体六自由度运动的幅值响应算子(RAO)。通过频谱分析获得运动响应的统计极值,筛选出FLNG液舱晃荡载荷最主导海况和浪向条件,生成FLNG船体六自由度运动的时间历程,作为液舱晃荡CFD数值模拟的运动激励。基于计算流体动力学(CFD)的数值模拟方法,模拟了极端海况下LNG液货舱内的晃荡现象,分析了舱壁上的极端晃荡载荷压力分布,揭示了不同液舱装载率对晃荡载荷分布和峰值的影响规律,为FLNG相似设计提供有益参考。
Tank sloshing is an important problem that floating liquefied natural gas production and storage unit (FLNG) may encounter during operation, and it is a key factor that must be considered during design and operation. This study employs numerical simulation methods to explore the characteristics of sloshing loads in the LNG tanks of Mark III membrane FLNG and its impact on structural safety. Using potential flow theory, coupled analysis of sea keeping and tank sloshing are conducted, computing the RAO of the FLNG’s six degrees of freedom motion under different wave headings, frequencies, and filling ratios. Spectral analysis is performed to analyze the period and extreme values of motion and accelerations, to determine the peak value of sloshing load and sea conditions, and to screen for the most critical FLNG motions and corresponding sea conditions and wave headings that cause severe tank sloshing. Based on the numerical simulation method of computational fluid dynamics (CFD), the sloshing phenomenon in the LNG tank under extreme sea conditions is simulated, and the extreme sloshing loads on the tank boundary is analyzed, revealing the influence of different filling ratios on the distribution and peak value of sloshing loads, providing a theoretical basis for FLNG design.
2025,47(9): 40-45 收稿日期:2024-7-20
DOI:10.3404/j.issn.1672-7649.2025.09.007
分类号:U661
作者简介:刘英芳(1988-),男,硕士,工程师,研究方向为海洋工程装备开发及载荷研究
参考文献:
[1] 韩旭亮, 谢彬, 朱小松, 等. 大型FLNG液舱晃荡和船体耦合运动研究现状及展望[J]. 中国海上油气, 2017, 29(1): 116-123.
HAN X L, XIE B, ZHU X S, et al. Status and outlook of research on the coupling motion between liquid sloshing and the hull body of large FLNG[J]. China Offshore Oil and Gas, 2017, 29(1): 116-123.
[2] 楼丹平, 杨春华. LNG船技术发展趋势[J]. 船舶, 2023, 34(4): 19-27.
LOU D P, YANG C H. Technology development trends of LNG carrier[J]. Ship & Boat, 2023, 34(4): 19-27.
[3] 朱小松, 谢彬, 喻西崇. LNG/LPG液舱晃荡研究进展综述[J]. 中国造船, 2013, 54(1): 229-236.
ZHU X S, XIE B, YU X C. Research progress of liquid sloshing in LNG/LPG tanks[J]. Shipbuilding of China, 2013, 54(1): 229-236.
[4] 王庆丰, 焦经纬, 徐刚, 等. FSRU船舶运动与液舱晃荡的耦合分析[J]. 江苏科技大学学报(自然科学版), 2017, 31(5): 684-688.
WANG Q F, JIAO J W, XU G, et al. Analysis of coupling effects of sloshing and ship motion for FSRU[J]. Journal of Jiangsu University of Science and Technology(Natural Science Edition), 2017, 31(5): 684-688.
[5] 滕蓓, 祁恩荣, 陆晔, 等. 大型LNG船液舱晃荡结构动响应研究[J]. 舰船科学技术, 2012, 34(4): 7-12.
TENG B, QI E R, LU Y, et al. Structural dynamic response study of large LNG carriers under sloshing impacts in tanks[J]. Ship Science and Technology, 2012, 34(4): 7-12.
[6] 王瑾, 吴磊. 液舱晃荡与船体耦合运动的全非线性数值模拟与分析[J]. 船舶力学, 2020, 24(9): 1142-1150.
WANG J, WU L. Fully nonlinear numerical simulation and analysis of sloshing and coupling ship motion[J]. Journal of Ship Mechanics, 2020, 24(9): 1142-1150.
[7] 张丽, 林莉, 王刚. LNG双燃料油船燃料舱结构强度评估方法研究[J]. 船舶, 2024, 35(2): 39-48.
ZAHNG L, LIN L, WANG G. Structural strength evaluation method for fuel tank of LNG dual-fuel oil tanker[J]. Ship & Boat, 2024, 35(2): 39-48.
[8] BUREAU V, NI 554-Design sloshing loads for LNG membrane tanks[S]. 2011.
[9] BUREAU V, NI 564-Strength assessment of LNG membrane tanks under sloshing loads[S]. 2011.
[10] BUREAU V, NR 445-Rules for offshore structures[S]. 2021.