为得到适用于新型轮缘驱动泵喷推进器的导管,在传统泵喷推进器导管的基础上进行性能优化方法研究十分必要。利用CFD数值模拟方法对比了4种剖面型线的导管对推进器敞水性能的影响。结果发现,各进速系数下,与1号导管相比,其他三款导管推进器的推力系数最大降低了123%,扭矩系数最大降低了37.19%。1号导管推进器的敞水效率也均高于其他三款推进器,并且随着进速系数J的增加,差距越来越大。1号导管推进器的敞水效率比2号最大提高了12.90倍,比3号最大提高了3.32倍,比4号最大提高了49.92%。并且1号导管推进器的最高效率点对应的进速系数J更大,说明1号导管推进器相比另外三款来说更能够兼顾高低航速进行使用。
In order to obtain a duct suitable for the new rim-driven pump jet propulsor, it is necessary to study the performance optimization method on the basis of the traditional pump jet propulsor. The influence of four different cross-sectional profiles of ducts on the open water performance of thrusters was compared using CFD numerical simulation method. As a result, it was found that under various acceleration coefficients, compared with the No.1 duct, the thrust coefficient of the other three duct thrusters decreased by a maximum of 123%, and the torque coefficient decreased by a maximum of 37.19%. The open water efficiency of the No.1 duct thruster is also higher than the other three thrusters, and the difference becomes larger with the increase of the acceleration coefficient J. The open water efficiency of the No.1 duct thruster has increased by 12.90 times compared to the maximum of the No.2, 3.32 times compared to the maximum of the No.3, and 49.92% compared to the maximum of the No.4. Moreover, the highest efficiency point of the No.1 duct thruster corresponds to a larger acceleration coefficient J, indicating that compared to the other three models, the No.1 duct thruster is more capable of balancing high and low speeds for use.
2025,47(9): 46-51 收稿日期:2024-7-30
DOI:10.3404/j.issn.1672-7649.2025.09.008
分类号:U661.31+3
基金项目:国家重点研发计划子课题(2020YFC1521704);天津市科技计划项目(22YDTPJC00470)
作者简介:张璇(2000-),女,硕士研究生,研究方向为计算流体力学、水下推进器
参考文献:
[1] GARY A, SHAHRESTANI N, FRANK D, et al. Propagator 2013: UF autonomous surface vehicle. Association for Unmanned Vehicle Systems International, 2013.
[2] TAN W Z, YAN X P, LIU Z L, et al. Technology development and prospect of shaftless rim-driven propulsion system[J]. Journal of Wuhan University of Technology, 2015, 39(3): 601-605.
[3] XU S, LONG X P, JI B, et al. Vortex dynamic characteristics of unsteady tip clearance cavitation in a waterjet pump determined with different vortex identification methods[J]. Journal of Mechanical Science and Technology, 2019, 33(12): 5901-5912.
[4] HSIAO CT, CHAHINE GL. Scaling of tip vortex cavitation inception noise with a bubble dynamics model accounting for nuclei size distribution[J]. Journal of Fluids Engineering-transactions of the Asme, 2005, 127(1): 55-65.
[5] 李晗, 黄桥高, 潘光. 前置预旋定子泵喷推进器辐射噪声数值预报(英文)[J]. Journal of Marine Science and Application, 2023, 22(2): 344-358.
LI H, HUANG Q G, PAN G. Numerical radiated noise prediction of a pre-swirl stator pump-jet propulsor[J]. Journal of Marine Science and Application, 2023, 22(2): 344-358.
[6] 武天龙, 王昌强, 张敏革, 等. 定转子间距对泵喷推进器的影响[J]. 数字海洋与水下攻防, 2023, 6(2): 175-185.
WU T L, WANG C Q, ZHANG M G, et al. Influence of constant rotor spacing on pump-jet thrusters[J]. Digital Ocean & Underwater Warfare, 2023, 6(2): 175-185.
[7] 张敏革, 王新锐, 韩光哲, 等. 轮缘驱动泵喷推进器的螺旋桨性能优化方法[J]. 舰船科学技术, 2024, 46(12): 46-52.
ZHANG M G, WANG X R, HAN G Z, et al. Propeller performance optimization method of rim-driven pump jet propulsor[J]. Ship Science and Technology, 2024, 46(12): 46-52.
[8] 杨蕾, 周军伟, 闫文辉, 等. 轮缘驱动推进器导管的初步设计及分析[J]. 中国造船, 2020, 61(S2): 323-329.
YANG L, ZHOU J W, YAN W H, et al. Preliminary design and analysis of rim drive thruster’s duct[J]. Shipbuilding Of China, 2020, 61(S2): 323-329.
[9] LIU B, VANIERSCHOT M, BUYSSCHAERT F. Study of wake dynamics of a rim-driven thruster based on numerical methods[C]//World Academy of Science, Engineering and Technology, 2022.
[10] OOSTERVELD M W C. Wake adapted ducted propellers[R]. Tech. Rep. Delft University of Technology, Delft 1970.