为有效处理各种复杂的几何形状和材料特性,提供更全面的分析结果,研究船舶推进轴系瞬态扭转振动响应有限元分析方法。本文采用ADINA有限元软件构建船舶推进轴系的有限元模型,利用Newmark-β法求解船舶推进轴系的瞬态扭转振动响应,全面分析推进轴系的瞬态扭转振动响应。试验结果表明,在不同工况下,螺旋桨桨叶的扭转应力分布存在差异,最大应力点分别位于桨叶与浆毂的交界区域或叶切面的周边;增大螺旋桨转角,可降低船舶推进轴系艉后与艉前轴承的瞬态扭转振动应力,艉前与艉后轴承的瞬态扭转振动应力分别稳定在±2 MPa与±1 MPa范围内;在共振转速下,中间轴承的角位移振幅波形波动幅度较大,表明其遭受较为严重的扭转变形,在最大持续转速下,角位移波形相对平稳,中间轴承运转更为平稳。
In order to deal with various complex geometric shapes and material characteristics effectively and provide more comprehensive analysis results, the finite element analysis method of transient torsional vibration response of ship propulsion shafting is studied. The finite element model of Marine propulsion shafting is constructed with ADINA finite element software, and the transient torsional vibration response of Marine propulsion shafting is solved by Newmark-β method, and the transient torsional vibration response of Marine propulsion shafting is analyzed comprehensively. The experimental results show that the torsional stress distribution of propeller blades is different under different working conditions, and the maximum stress point is located at the interface area between blade and hub or around the accompanying edge of blade section. With the increase of propeller Angle, the transient torsional vibration stress of post-stern and post-stern bearings of Marine propulsion shafting can be reduced, and the transient torsional vibration stress of post-stern and post-stern bearings is stable within the range of ± 2 MPa and ± 1 MPa respectively. At the resonance speed, the angular displacement amplitude waveform of the intermediate bearing fluctuates greatly, indicating that it has suffered serious torsional deformation. At the maximum continuous speed, the angular displacement waveform is relatively stable, and the intermediate bearing runs more smoothly.
2025,47(9): 52-56 收稿日期:2025-1-24
DOI:10.3404/j.issn.1672-7649.2025.09.009
分类号:U664.121
基金项目:辽宁省教育科学十三五规划课题资助项目(JG22EB032)
作者简介:刘莉(1981-),女,硕士,讲师,研究方向为机械设计与智能制造、数字化设计与仿真等
参考文献:
[1] 田佳彬, 黄自杰, 王娟, 等. 基于粒子阻尼器的船舶推进轴系减振研究[J]. 振动与冲击, 2022, 41(24): 97-103+149.
[2] 陈洁, 曾励. 船舶动力推进轴系纵向低频振动精准控制仿真[J]. 计算机仿真, 2024, 41(10): 296-300.
[3] 周慧慧, 李增光, 李天匀, 等. 船舶推进轴系振动的不确定性分析[J]. 中国舰船研究, 2023, 18(2): 235-242+250.
[4] 古铮, 刘金林, 房诗雨, 等. 轴段空心度对舰船复杂推进轴系动力学特性影响分析及多目标优化研究[J]. 推进技术, 2023, 44(8): 249-260.
[5] 巫頔, 谢溪凌, 张志谊. 用于推进轴系振动分析的改进数值组装法[J]. 振动与冲击, 2022, 41(15): 99-104.
[6] 安宇晨, 刘静, 潘光. 支撑刚度对水下航行器电机-推进轴系振动特性的影响规律分析及优化[J]. 推进技术, 2024, 45(11): 192-203.
[7] DUAN W, HUANG H, CHEN S, et al. Vibration absorption based on mr with synchronous controlled stiffness and damping for propulsion shafting[J]. Ocean Engineering, 304(15), 1.1–1.11.
[8] 周凌波, 段勇, 孙玉东, 等. 船舶推进轴系非接触轴向加载及激振技术研究[J]. 中国造船, 2023, 64(6): 13-23.