在复杂多变的环境中,快速找到最优解,提升解耦合过程的稳定性,研究船舶运动系统解耦合过程的智能优化算法应用。通过考虑船舶运动时纵摇与横摇之间耦合关系,建立船舶运动系统耦合方程;通过将船舶运动系统耦合方程的解耦过程转化成非线性优化问题,设计船舶运动系统解耦合过程的目标函数与约束条件;在复杂多变的环境中,利用改进野马优化算法,求解目标函数,快速找到最优解,完成船舶运动系统的解耦合,提升解耦合过程的稳定性。实验证明:该算法具备较优的耦合方程求解效果;在复杂多变的环境中,该算法可有效完成船舶运动系统的解耦合,得到船舶横、纵摇的运动时历。
In the complex and changeable environment, the optimal solution is quickly found to improve the stability of the decoupling process, and the application of intelligent optimization algorithm for the decoupling process of ship motion system is studied. By considering the coupling relation between pitch and roll, the coupling equation of ship motion system is established. By transforming the decoupling process of the ship movement system coupling equation into a nonlinear optimization problem, the objective function and constraint conditions of the decoupling process of ship movement system are designed. In the complex and changeable environment, the improved Mustang optimization algorithm is used to solve the objective function, find the optimal solution quickly, complete the decoupling of the ship motion system, and improve the stability of the decoupling process. The experimental results show that the algorithm has a better effect of solving the coupling equation. In the complex and changeable environment, this algorithm can effectively complete the decoupling of ship motion system, and obtain the motion time history of ship transverse and pitching.
2025,47(9): 61-64 收稿日期:2024-10-28
DOI:10.3404/j.issn.1672-7649.2025.09.011
分类号:U661.1
作者简介:徐莹莹(1988-),女,硕士,讲师,研究方向为最优化理论
参考文献:
[1] 于子涵, 邹早建. 螺旋桨对船舶操纵运动水动力影响的数值研究[J]. 哈尔滨工程大学学报, 2023, 44(5): 724-733, 742.
YU Z H, ZOU Z J. A numerical study on the effect of propellers on ship hydrodynamic forces in maneuvering motion[J]. Journal of Harbin Engineering University, 2023, 44(5): 724-733, 742.
[2] 刘文夫, 周素素, 杨旭, 等. 液舱运动与流体晃荡耦合运动数值模拟与试验验证[J]. 船舶力学, 2024, 28(10): 1516-1525.
LIU W F, ZHOU S S, YANG X, et al. Numerical simulation and test verification for tank motion coupled with liquid sloshing[J]. Journal of Ship Mechanics, 2024, 28(10): 1516-1525.
[3] 孙小帅, 马骋, 钱正芳, 等. 波浪中水面船舶与拖曳系统耦合运动特性计算方法研究[J]. 中国造船, 2022, 63(5): 71-81.
SUN X S, MA C, QIAN Z F, et al. Numerical research on coupled motions of surface vessel and towing system in waves[J]. Shipbuilding of China, 2022, 63(5): 71-81.
[4] 郭嘉宁, 吕海宁, 谢文会, 等. 新型垂向耦合多体低运动半潜平台运动性能研究[J]. 船舶力学, 2022, 26(9): 1290-1302.
GUO J N, LÜ H N, XIE W H, et al. Motion performance of a new vertically-coupled multi-body low motion semi-submersible platform[J]. Journal of Ship Mechanics, 2022, 26(9): 1290-1302.
[5] JIANG L, SHANG X, LU L, et al. Data-driven modeling of ship maneuvering motion using adaptive gridding-based weighted twin support vector regression[J]. Ocean Engineering, 2024, 11(1): 1-15.
[6] 李姗鸿, 靳储蔚, 张达敏, 等. 混合策略改进的野马优化算法[J]. 计算机工程与设计, 2024, 45(2): 405-413.
LI S H, JIN C W, ZHANG D M, et al. Improved wild horse optimizer algorithm with mixed strategy[J]. Computer Engineering and Design, 2024, 45(2): 405-413.