船载古地磁屏蔽室通过高导磁坡莫合金屏蔽材料在内部构建低通密度的近零磁空间,为长岩芯超导磁力仪等设备提供洁净的工作磁场环境。受船体航向改变磁屏蔽层磁化程度不同导致古地磁屏蔽室性能下降,传统的消磁方法效果不佳。基于有限元法(FEM),对古地磁屏蔽室在不同航向下磁化程度仿真分析,提出一种适用于船载古地磁屏蔽室的消磁方法,配置一套消磁系统,通过试验验证能够恢复到剩余磁场小于100 nT的初始技术状态。
The shipborne paleomagnetic shielding room uses high-permeability permalloy shielding materials to create a low-flux density near-zero magnetic space inside, providing a clean magnetic field environment for equipment such as long-core superconducting magnetometers. The performance of the paleomagnetic shielding room declines due to different degrees of magnetization in the shielding layers caused by changes in the ship's heading, and traditional demagnetization methods are ineffective. Based on the finite element method (FEM), we performed a simulation analysis of the magnetization degree of the paleomagnetic shielding room under different headings and proposed a demagnetization method suitable for shipborne paleomagnetic shielding rooms. A demagnetization system was configured, and tests verified that it could restore the initial technical state with a residual magnetic field of less than 100 nT.
2025,47(9): 139-145 收稿日期:2024-6-18
DOI:10.3404/j.issn.1672-7649.2025.09.024
分类号:U662
作者简介:周昌剑(1988-),男,硕士,高级工程师,研究方向为磁屏蔽防护
参考文献:
[1] 葛坤朋, 刘青松, 朱日祥, 等. 磁屏蔽室内磁性样品所产生干扰磁场的探讨[J]. 地球物理学报, 2011, 26(3): 843-849.
[2] 秦华峰, 蔡书慧, 等. 样品固定装置及该装置进行古地磁场强度实验的方法[P]. 中国专利: CN103033773B.2016.08.10.
[3] 刘习凯, 张露, 窦帅, 等. 一种磁屏蔽室消磁线圈系统及其制备方法[P]. 中国专利: CN114823045B.2024.01.05.
[4] 孔祥燕, 王美玲, 杨瑞虎, 等. 一种磁屏蔽室的设计方法及系统[P]. 中国专利: CN106845045B.2020.09.15.
[5] 王帆, 卓彦, 杨思嘉, 等. 一种大型磁屏蔽系统及其消磁装置[P]. 中国专利: CN112837889B.2023.04.07.
[6] SUN Z, REISNER M, FIERLINGER P, et al. Dynamic modeling of the behavior of permalloy for magnetic shielding[J]. Journal of Applied Physics, 2016,119: 193902.
[7] SUN Z, SCHNABEL A ,BURGHOFF M, et al. Calculation of an optimized design of magnetic shields with integrated demagnetization coils[J]. AIP Advances, 2016(6): 075220.
[8] SUN J J, REN J Y, XU X P, et al. Optimized analysis model and improvement method for the performance of magnetic shielding device considering stress effects[J]. IEEE Sensors Journal, 2024(7): 1.
[9] YANG J Z, ZHANG X, SHI M X, et al. Experimental studies on the performance of magnetic shields under different magnetization conditions[J]. Journal of Physics D-applied Physics, 2023, 56: 215001.
[10] ALTAREV I, BABCOCK E, BECK D, et al. A magnetically shielded room with ultra low residual field and gradient[J]. Review of Scientific Instruments, 2014: 1–9.
[11] GU C, ZOU S, HAN Z, et al. Passive magnetic field cancellation device by multiple high-Tc superconducting coils[J]. Review of Scientific Instruments, 2010, 81: 045101-045101-5.
[12] BRYS T, CZEKAJ S, DAUM M, et al. Magnetic field stabilization for magnetically shielded volumes by external field coils[J]. Journal of Research of the National Institute of Standards and Technology, 2005, 110: 173-178.
[13] KATO K, YAMAZAKI K, SATO T, et al. Active magnetic compensation composed of shielding panels[J]. Neurology and Clinical Neurophysiology, 2004, 68: 1–4.
[14] 杨振宇, 林春生. 退磁线圈的设计改进与磁场性能分析[J]. 船电技术, 2010(11): 39–42.
[15] 郭成豹, 周炜昶. 舰船消磁绕组磁特征数值计算与验证研究[J]. 兵工学报, 2017, 38(10): 1988-1994.
[16] BORK J, HAHLBOHM H D, KLEIN R, et al. The 8-layered magnetically shielded room of the PTB: design and construction[J]. Helsinki University of Technology, Espoo, Finland, 2001: 790.
[17] MAGER A, et al. The Berlin magnetically shielded room (BMSM), Section A: design and construction[J]. In Biomagnetism, Berlin: Walter de Gruyter, 1981: 51–78.
[18] ERNE S, HAHLBOHM H D, SCHEER H, et al. The Berlin magnetically shielded room (BMSR), section B: Performances[J]. Berlin: Walter de Gruyter, 1981: 79–87.
[19] KAJIWARA G, HARAKAWA K, OGATA H, et al. High-performance magnetically shielded room[J]. Magnetics IEEE·Transactionson, 1996, 32: 2582–2585.
[20] HARAKAWA K, KAJIWARA G, KAZAMI K, et al. Evaluation of a high-performance magnetically shielded room for biomagnetic measurement[J]. Magnetics IEEE·Transactionson, 1996,32: 5226–5259.
[21] BAUM E, BORK J. Systematic design of magnetic shields[J]. Magnetism and Magnetic Materias, 1991,101: 69–74.
[22] COHEN D, SCHLAPFER U, AHLFORS S, et al. New six layer magnetically shielded room for MEG[C]//BIOMAG 2022: 13th International Conferenceon·Biomagnetism: Jena, Germany, 2022.
[23] STROINK G, BLACKFORD B, BROWN B, et al. Aluminium shielded room for biomagnetic measurements[J]. Review of Scientific Instruments, 1981, 52: 463-468.
[24] SUZUKI A, ISHII K, YAMAZAKI H, et al. Development of the magnetic aluminum shield for MEG[J]. Cyric Annual Report, 2001.
[25] TER BRAKE H J M, HUONKER R, ROGALLA H, et al. New results in active noise compensation for magnetically shielded rooms[J]. Measurement Science and Technology, 2001(4): 370-375.
[26] TER BRAKE H J M, WIERINGA H J, ROGALLA H, et al. Improvement of the performance of a mu-metal magnetically shielded room by means of active compensation[J]. Measurement Science and Technology, 1991, (2): 596-601.
[27] PLATZEK D, NOWAK H, GIESSLER F, et al. Active shielding to reduce low frequency disturbances in direct current near biomagnetic measurements[J]. Review of Scientific Instruments. 1999, 70: 2465–2470.
[28] KURIKI S, HAYASHI A, HIRATA Y, et al. Hybrid technique for reduction of environmental magnetic field nosie[C]//Process of the 12th Intertional Conference on Biomagnetism 2000, Helsinki University of Technology, Espoo, Finland, Ed. J. Nenonen, R. Ilmoniemi, T. Katila(Vantaa, Finland: Dark), 2000.