水下无人航行器、水面无人船艇等成为海洋探测和开发的主要装备之一,但它们都存在各自的优势和不足。随着科技的发展,具有独特优势的水空两栖无人航行器将成为海洋领域不可或缺的重要装备之一。本文通过分别研究飞行器、水下航行器在外形设计、材料以及动力推进方面的现状,总结各自的优势与不足,为跨介质航行器动力的发展研究提供了基础,并且针对跨介质水空无人航行器研制过程中的变体技术,介质跨越过程以及动力推进系统等关键技术进行论述,可为水空无人航行器研制提供参考。
With the advancement of China's maritime power strategy, the development and exploration of the ocean has become imminent. Unmanned underwater vehicles, unmanned surface boats, etc. have become one of the main equipment for ocean exploration and development, but they all have their own advantages and disadvantages. With the development of science and technology, unmanned aerial vehicles with unique advantages will become one of the indispensable and important equipment in the marine field. This paper summarizes the advantages and disadvantages of aircraft and underwater vehicles by studying the current situation of shape design, materials and power propulsion respectively, which provides a basis for the study of trans-media vehicle dynamics, and discusses the key technologies such as variant technology, medium crossing process and dynamic propulsion system in the development process of trans-media unmanned aerial vehicles, which can provide a reference for the development of unmanned underwater vehicles.
2025,47(10): 1-7 收稿日期:2024-7-10
DOI:10.3404/j.issn.1672-7649.2025.10.001
分类号:U674.941;V279
基金项目:江苏海洋大学研究生科研与实践创新计划项目(KYCX2023-64)
作者简介:李汶烨(1999-),男,硕士,研究方向为水动力学、跨介质水空无人航行器
参考文献:
[1] 张朝阳. 变构型跨介质飞行器发展及关键技术分析[J]. 宇航总体技术, 2021, 5(6): 54-61+72.
[2] 何肇雄. 国外跨介质飞行器发展历程及启示[J]. 舰船科学技术, 2016, 38(9): 152-157.
HE Z X. Development of foreign trans-media aircraft and its enlightenment to China[J]. Ship Science and Technology, 2016, 38(9): 152-157.
[3] 李阳. 螺旋推进式水下航行器结构设计与外形优化[D]. 青岛: 青岛科技大学, 2021.
[4] 申洪彬. 混合驱动AUV结构设计及水动力性能分析[D]. 杭州: 中国计量大学, 2022.
[5] 康宝臣, 冯丽娜, 吴琪. 水下航行器舱段连接结构设计[J]. 机械工程与自动化, 2019(3): 129-130.
[6] 王童豪, 彭星光, 潘光等. 无人水下航行器的发展现状与关键技术[J]. 宇航总体技术, 2017, 1(4): 52-64.
[7] 曲文新. 载人潜水器耐压壳结构设计与分析[D]. 哈尔滨: 哈尔滨工程大学, 2014.
[8] 张淏酥, 王涛, 苗建明, 等. 水下无人航行器的研究现状与展望[J]. 计算机测量与控制, 2023, 31(2): 1-7+40.
[9] 裘金婧. 四旋翼水下航行器的外形优化和上位机界面的设计[D]. 杭州: 浙江大学, 2018.
[10] 苗怡然. 基于参数化的水下航行器主体结构设计优化研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
[11] 谢凯源. 三推进器结构无人水下航行器的深度控制研究[D]. 杭州: 浙江大学, 2016.
[12] 谢源. 矢量推进式新型水下航行器主体的关键结构研究[D]. 杭州: 浙江大学, 2016.
[13] 王在铎, 王威, 张孝石. 表面特性对水下航行器流体动力的影响研究[J]. 鱼雷技术, 2015, 23(5): 321-325.
WANG Z D, WANG W, ZHANG X S. Influences of surface characteristics of underwater vehicle on its hydrodynamic properties[J]. Torpedo Technology, 2015, 23(5): 321-325.
[14] 宋保维, 潘光, 张立川, 等. 自主水下航行器发展趋势及关键技术[J]. 中国舰船研究, 2022, 17(5): 27-44.
SONG B W, PAN G, ZHANG L C, et al. Development trend and key technologies of autonomous underwater vehicles[J]. Chinese Journal of Ship Research, 2022, 17(5): 27-44.
[15] 方红伟, 李紫嫣. 自主水下航行器能源系统技术综述[J]. 电力系统及其自动化学报, 2022, 34(8): 18-26.
FANG H W, LI Z Y. Overview of energy system techniques for autonomous underwater vehicles[J]. Proceedings of the Chinese Society of Universities for Electric Power System and Automation, 2022, 34(8): 18-26.
[16] 钟宏伟, 李国良, 宋林桦, 等. 国外大型无人水下航行器发展综述[J]. 水下无人系统学报, 2018, 26(4): 273-282.
ZHONG H W, LI G L, SONG L Y, et al. Development of large displacement unmanned undersea vehicle in foreign countries: a review[J]. Journal of Unmanned Undersea Systems, 2018, 26(4): 273-282.
[17] 宁涛, 党建军, 陈伟华. 水下高速航行器壳体联结强度分析[J]. 机械设计与制造, 2009(8): 186-188.
[18] 王妹婷, 齐永锋, 汤方平等. 水下机器人外形优化设计[J]. 机床与液压, 2014, 42(5): 76-79.
Wang S t, QI Y F, TANG F P, et al. Shape optimal design of underwater robot[J]. Machine Tool and Hydraulics, 2014, 42(5): 76-79.
[19] 穆子豪, 陈玲, 韦浩, 等. 跨介质水空两栖航行器的设计研究[J]. 今日制造与升级, 2022(2): 38-40.
MU Z H, CHEN L, WEI H, et al. Study on the design of a trans-medium underwater amphibious vehicle[J]. Manufacture and Upgrading Today, 2022(2): 38-40.
[20] 孙祥仁, 曹建, 姜言清,等. 潜空跨介质无人航行器发展现状与展望[J]. 数字海洋与水下攻防, 2020, 3(3): 178-184.
SUN X R, CAO J, JIANG Y Q, et al. Development status of unmanned under water-aerial cross-domain vehicles[J]. Digital Ocean & Underwater Warfare, 2020, 3(3): 178-184.
[21] 刘相知, 崔维成. 潜空两栖航行器的综述与分析[J]. 中国舰船研究, 2019, 14(S2): 1-14.
[22] AJANIC E. Robotic avian wing explains aerodynamic advantages of wing folding and stroke tilting in flapping flight[J]. Advanced Intelligent Systems, 2022, 5(2): 1
[23] CHEN M, LIU R M, WANG L F, et al. Connotation and key research areas of new application code “Aerospace Mechanics” of the National Natural Science Foundation of China[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 129947-129947.
[24] YAO G C, LI Y Z, ZHANG H Y, et al. Review of hybrid aquatic-aerial vehicle (HAAV): Classifications, current status, applications, challenges and technology perspectives[J]. Progress in Aerospace Sciences, 2023, 139: 100902.
[25] PENGELLEY R. All hands on deck: The sky's the limit for shipboard UAVs[N]. Navy International, 2009, (12): 12-17.
[26] 王敏健. 考古AUV水动力分析及壳体外形设计[D]. 上海: 上海海洋大学, 2022.
[27] SHI Y, GAO X, PAN G. Experimental and numerical investigation of the frequency-domain characteristics of impact load for AUV during water entry[J]. Ocean Engineering, 2020, 202: 107203.
[28] 杨健, 冯金富, 齐铎等. 水空介质跨越航行器的发展与应用及其关键技术[J]. 飞航导弹, 2017, (12): 1-8+61.
Yang Jian, et al. Development, application and key technology of water-to-air medium crossover vehicle[J]. Aerodynamic Missile Journal. 2017, (12): 1-8+61.
[29] 冯金富, 胡俊华, 齐铎. 水空跨介质航行器发展需求及其关键技术[J]. 空军工程大学学报(自然科学版), 2019, 20(3): 8-13.
FENG J F, HU J H, QI D. Study on development needs and key technologies of air-water trans-media vehicle[J]. Journal of Air Force Engineering University(Natural Science Edition), 2019, 20(3): 8-13.
[30] 侯涛刚, 靳典哲, 龚毓琰, 等. 水空跨介质航行器前沿技术进展[J]. 科技导报, 2023, 41(2): 5-22.
[31] AJANIC E, FEROSKHAN M, MINTCHEV S, et al. Bioinspired wing and tail morphing extends drone flight capabilities[J]. Science Robotics, 2020, 5(47): 49-62.
[32] SIDDALL R M. Kovač Launching the AquaMAV: bioinspired design for aerial-aquatic robotic platformsBioinspiration Biomimetics, 2014, 9(3): 31-32. 031001.
[33] ZHAO D, SONG S F, SU J L, et al. Learning bionic motions by imitating animals[C]//2020 IEEE International Conference on Mechatronics and Automation. Piscataway: IEEE, 2020.
[34] CALISTI M, PICARDI G, LASCHI C. Fundamentals of soft robot locomotion[J]. Journal of the Royal Society, Interface, 2017, 14(130): 20170101.
[35] HUANG J G, SUN Y L, WANG T M, et al. Fluid-structure interaction hydrodynamics analysis on a deformed bionic flipper with nonuniformly distributed stiffness[J]. IEEE Robotics and Automation Letters, 2020, 5(3): 4657-4662.
[36] 邵冬. 跨介质飞航器动力分析[J]. 航空动力, 2020(1): 12-15.
SHAO D. Analysis to the power system of trans-media vehicle[J]. Aerospace Power, 2020(1): 12-15.
[37] 廖保全, 冯金富, 齐铎, 等. 一种可变形跨介质航行器气动/水动特性分析[J]. 飞行力学, 2016, 34(3): 44-47+57.
[38] WEISLER W, STEWART W, ANDERSON M B, et al. Testing and characterization of a fixed wing cross-domain unmanned vehicle operating in aerial and underwater environments[J]. IEEE Journal of Ocean Engineering, 2011, 43(4): 969-982.
[39] CHOPRA I. Status of application of smart structures technology to rotorcraft systems[J]. Journal of the America Helicopter Society, 2000, 45(4): 228-252.
[40] 杨兴帮, 梁建宏, 文力等. 水空两栖跨介质无人飞行器研究现状[J]. 机器人, 2018, 40(1): 102-114.
[41] 王聪, 许海雨, 马贵辉, 等. 跨介质航行器动力学前沿技术研究进展[J]. 水下无人系统学报, 2024, 32(3): 384-395.
WANG C, XV H Y, MA G H, et al. Research progress of cutting-edge technologies of trans-medium vehicle dynamics[J]. Journal of Unmanned Undersea Systems, 2024, 32(3): 384-395.
[42] C LYU, D LU, C XIONG, et al. Lian toward a gliding hybrid aerial underwater vehicle: design, fabrication, and experiments[J]. Field Robot, 2022, 39(5): 543-556.
[43] ZENG Z, LYU C, BI Y, et al. Review of hybrid aerial underwater vehicle: cross-domain mobility and transitions control[J]. Ocean Eng. 2022, 248(3): 1-13.
[44] ROCKENBAUER F M, JEGER S, BELTRAN L, et al. Dipper: a dynamically transitioning aerial-aquatic unmanned vehicle[J]. Proceedings of Robotics: Science and Systems, 2021, 6(4): 12-16.
[45] RAFEEQ M, TOHA S F, AHMAD S, et al. Locomotion strategies for amphibious robots-a review[C]//IEEE Access, 2021.
[46] BARBARINO S, BILGEN O, AJAJ R M, et al. A review of morphing aircraft[J]. Journal of Intelligent Material Systems, 2011, 22(9): 823-877.
[47] LIU Z P, SHI Y, WU K, et al. Experimental study on load characteristics of vehicle during high-speed water entry[J]. Ocean Engineering, 2023, 288: 116052.
[48] DONG L, DING W, WEI Z, et al. Numerical study on the water entry of two-dimensional airfoils by BEM[J]. Engineering Analysis with Boundary Elements, 2023, 151: 83-100.
[49] HU J H, XU B W, FENG J F, et al. Research on water-exit and take-off process for morphing unmanned submersible aerial vehicle[J]. China Ocean Engineering, 2017, 31(2): 202-209.
[50] 陈怀远. 跨介质飞行器设计及流体动力学特性分析[D]. 南京: 南京航空航天大学, 2019.
[51] 张硕. 共轴式水空双动力跨介质无人机结构设计与动力性能研究[D]. 西安: 西安电子科技大学, 2022.
[52] 贺永圣. 仿生跨介质飞行器水气动布局融合设计及出水特性分析[D]. 长春: 吉林大学, 2022.
[53] LI C H, WANG C, WEI Y J, et al. Numerical investigation on the cavity dynamics and deviation characteristics of skipping stones[J]. Journal of Fluids and Structures, 2021, 104: 103301
[54] EUBANK R D, BRADLEY J M, ATKINS E M. Energy-aware multiflight planning for an unattended seaplane: Flying fish[J]. Journal of Aerospace Information Systems, 2017, 14(2): 73-91.
[55] SIDDALL R, KOVAC M. Fast aquatic escape with a jet thruster[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(1): 217-226.
[56] PENA I, BILLINGSLEY E, ZIMMERMAN S, et al. Comprehensive sizing process, actuation mechanism selection, and development of gannet-inspired amphibious drones[C]//AIAA Aviation 2020 Forum. Reston: AIAA, 2020.
[57] DI L M, MINTCHEV S, SU Y X, et al. A bioinspired Separated Flow wing provides turbu-lence resilience and aerodynamic efficiency for miniature drones[J]. Science Robotics, 2020, 5(38): 19-28.