本文针对船舶设备基座变频激励振动响应问题,提出基于箕舌线变步长自适应算法的船舶设备振动主动控制方法,旨在解决船舶设备激励频率变化时的基座振动主动控制问题。首先介绍基于箕舌线函数的改进变步长FxLMS自适应算法基本原理,然后建立船舶设备-基座系统的振动微分方程,推导振动主动控制系统中的初级和次级通道传递函数,再结合基于箕舌线函数的改进变步长FxLMS自适应算法,建立船舶设备-基座系统的变频激励自适应主动振动控制模型,基于该模型开展恒定频率及变频激励下的振动主动控制仿真分析。结果显示,变频多线谱激励下,50 Hz线谱减振达到78%,80 Hz线谱减振达到80%,说明本文的控制策略可靠有效,能够有效降低多线谱变频激励下设备-基座振动响应,可为船舶设备主动隔振提供新技术。
In order to solve the problem of frequency conversion excitation vibration response of ship equipment base, this paper proposes an active control method of ship equipment vibration based on the adaptive algorithm of tongue line variable step size, which aims to solve the problem of active control of base vibration when the excitation frequency of ship equipment changes. In this paper, the fundamental principle of the improved variable step-size FxLMS adaptive algorithm based on the tongue-like curve function is firstly introduced. Then, the vibration differential equation of the ship equipment-base system is established, the transfer functions of the primary and secondary channels in the vibration active control system are derived, and then combined with the improved variable step size FxLMS adaptive algorithm based on the tongue-like curve function, the adaptive active vibration control model of the variable frequency excitation of the ship equipment-base system is established, and the simulation and analysis of the vibration active control under constant frequency and frequency conversion excitation are carried out based on the model. The results show that the vibration reduction of 50 Hz line spectrum reaches 78%, and that of 80 Hz line spectrum reaches 80% under the excitation of frequency conversion multi-line spectrum. indicating that the control strategy proposed in this paper is reliable and effective, which can effectively reduce the vibration response of equipment-base under multi-line spectrum frequency conversion excitation, and the control method can provide a new technology for the active vibration isolation of ship equipment.
2025,47(10): 144-149 收稿日期:2024-7-16
DOI:10.3404/j.issn.1672-7649.2025.10.024
分类号:O328
基金项目:国家自然科学基金青年基金项目(52401369);水声技术全国重点实验室基金项目(2023JCJQLB07206);中央高校基本科研业务费-新兴方向培育专项计划项目(3072024XX0503)
作者简介:黄叙(2001-)男,本科在读,研究方向为电子信息工程
参考文献:
[1] WU C, YANG J, LIU X, et al. Active vibration control of heavy platform-struts structure[J]. Journal of Vibration and Control, 2023, 29(11-12): 2752-2762.
[2] 巫頔, 谢溪凌, 张志谊. 舱段主动隔振系统作动器配置优化[J]. 振动与冲击, 2024, 43(1): 91-98.
WU D, XIE X, ZHANG Z. Allocation optimization of actuators in cabin shell active vibration isolation system[J]. Journal of Vibration and Shock, 2024, 43(1): 91-98.
[3] 朱石坚, 何琳. 船舶机械振动控制[M]. 北京: 国防工业出版社, 2003.
[4] 沈密群, 严济宽. 舰船浮筏装置工程实例[J]. 噪声与振动控制, 1994, 21-23, 45-48.
SHEN M Q, YAN J K . Engineering case study of floating raft systems for naval ships[J]. Noise and Vibration Control, 1994, 21-23, 45-48.
[5] XIE X, REN M, YANG D, et al. Simulation and experiment on tonal vibration transmission control with a multi-channel global control method[J]. Mechanical Systems and Signal Processing 2020 138: 1-17.
[6] 许万, 张世涛, 夏瑞东, 等. 基于边缘计算的船舶大型主动隔振系统分布式控制架构[J]. 中国舰船研究, 2024, 19(2): 207-214.
XU W, ZHANG S T, XIA R D, et al. Edge computing-based distributed control architecture for large-scale active vibration isolation system in ships[J]. Chinese Journal of Ship Research, 2024, 19(2): 207-214.
[7] 姜荣俊, 何琳. 有源振动噪声控制技术在潜艇中的应用研究[J]. 噪声与振动控制, 2005(2): 1-6.
JIANG R J, HE L. Application research of active noise and vibration control technology in submarines[J]. Noise and Vibration Control, 2005(2): 1-6.
[8] 浦玉学, 张方, 姜金辉. 变步长自适应结构振动主动控制算法[J]. 振动与冲击, 2015, 34(10): 199-205.
PU Y X, ZHANG F, JIANG J H. A variable step size adaptive active structure vibration control algorithm[J]. Journal of Vibration and Shock, 2015, 34(10): 199-205.
[9] 卢京潮. 自动控制原理 [M]. 北京: 清华大学出版社, 2013.
[10] DUAN N, WU C, HUANG Y, et al. Lateral vibration analysis and active control of the propeller-shafting system using a scaled experimental model[J]. Ocean Engineering, 2023, 267: 113285.
[11] 张锋, 李以农, 丁庆中. FxLMS算法的实现及硬件在环仿真验证[J]. 重庆大学学报, 2013, 36(8): 26-32.
ZHANG F, LI Y N, DING Q. FxLMS algorithm's realization and verification by hardware in the loop simulation[J]. Journal of Chongqing University, 2013, 36(8): 26-32.
[12] 文仕天, 陈美霞, 赵应龙. 含夹层流体的双板主、被动控制理论分析和实验研究[J]. 噪声与振动控制, 2024, 44(3): 35-42.
WEN S T, CHEN M X, ZHAO Y L. Theoretical analysis and experimental study of active and passive control of a double-plated structure with inner fluid[J]. Noise and Vibration Control, 2024, 44(3): 35-42.
[13] 高伟鹏, 贺国, 刘树勇. 多频波动线谱自适应控制算法及试验[J]. 哈尔滨工业大学学报, 2021, 53(1): 168-175.
GAO W P, HE G, LIU S Y. Adaptive control algorithm of multi-frequency fluctuating line spectra and experiment[J]. Journal of Harbin Institute of Technology, 2021, 53(1): 168-175.
[14] 路翠华, 李国林, 周洪庆. 基于相关特性的改进箕舌线变步长LMS 算法[J]. 数据采集与处理, 2015, 30(4): 896.
LU C H, LI G L, ZHOU H Q. Improved tongue-like curve variable step LMS algorithm based on correlation characteristic[J]. Journal of Data Acquisition and Processing, 2015, 30(4): 896.
[15] 李常虎, 伍松, 魏晟弘, 等. 箕舌线变步长LMS算法的分析与改进[J]. 广西科技大学学报, 2022, 33(4): 57-62.
LI C H, WU S, WEI S H, et al. Analysis and improvement of a variable step LMS algorithm for tongue-like curve[J]. Journal of Guangxi University of Science and Technology, 2022, 33(4): 57-62.
[16] 满孝臣, 焦素娟, 龙新华, 等. 基于液压伺服作动器的主动隔振系统实验研究[J]. 噪声与振动控制, 2020, 40(3): 207-212.
MAN X C, JIAO S J, LONG X H, et al. Experimental study on active isolation of vibration based on hydraulic servo actuators[J]. Noise and Vibration Control, 2020, 40(3): 207-212.