利用LS_DYNA软件,对高速破片侵彻防护液舱过程中液舱后板的载荷特性进行仿真研究,分析液舱后板载荷的空间分布特性及破片的速度和厚度对液舱后板载荷的影响,得到了液舱后板任一点的压力峰值和比冲量的拟合计算公式。研究表明,液舱后板的载荷在板中心(即破片中心在液舱后板上的投影点)最大,随着到中心点的距离增加而呈指数衰减;增加破片的速度或厚度,将使液舱后板任一点的压力峰值和比冲量均增大。
Numerical simulations were conducted to research load characteristic of guarding liquid cabin's back plate under high velocity fragment impact by using LS_DYNA software. The spatial distribution of liquid cabin's back plate load was analyzed, as well as the effect on liquid cabin's back plate load of fragment's velocity and thickness. The fitting formulas for calculating peak pressure and specific impulse at any one point of liquid cabin's back plate were gained. The research shows that, the load is ultimate at center point of liquid cabin's back plate which is the projective point of fragment's center point on the plate, and is exponentially declined when increasing the distance from the center point to the other one point. If fragment's velocity or thickness increases, the peak pressure and specific impulse at any one point of liquid cabin's back plate both increase.
2018,40(4): 1-5 收稿日期:2016-12-29
DOI:10.3404/j.issn.1672-7649.2018.04.001
分类号:O347
基金项目:国家自然科学基金资助项目(51409253)
作者简介:吴林杰(1987-),男,博士研究生,研究方向为舰船抗爆抗冲击
参考文献:
[1] 唐廷, 朱锡, 侯海量, 等. 大型水面舰艇防雷舱结构防护机理数值仿真[J]. 哈尔滨工程大学学报, 2012, 33(2):142-149.TANG Ting, ZHU Xi, HOU Hai-liang, et al. Numerical simulation study on the defense mechanism of a cabin near the shipboard for large surface vessels[J]. Journal of Harbin Engineering University, 2012, 33(2):142-149.
[2] VARAS D, LÓPEZ-PUENTE J, ZAERA R. Experimental analysis of fluid-filled aluminium tubes subjected to high-velocity impact[J]. International Journal of Impact Engineering, 2009, 36:81-91.
[3] VARAS D, ZAERA R, LÓPEZ-PUENTE J. Numerical modelling of the hydrodynamic ram phenomenon[J]. International Journal of Impact Engineering, 2009, 36:363-374.
[4] PETER J DISIMILE, LUKE A SWANSON, NORMAN TOY. The hydrodynamic ram pressure generated by spherical projectiles[J]. International Journal of Impact Engineering, 2009, 36:821-829.
[5] VARAS D, ZAERA R, LÓPEZ-PUENTE J. Numerical modelling of partially filled aircraft fuel tanks submitted to hydrodynamic ram[J]. Aerospace Science and Technology, 2012, 16:19-28.
[6] ARTERO-GUERRERO J A, PERNAS-SÁNCHEZ J, VARAS D, et al. Numerical analysis of CFRP fluid-filled tubes subjected to high-velocity impact[J]. Composite Structures, 2013, 96:286-297.
[7] 徐双喜, 吴卫国, 李晓彬, 等. 舰船舷侧防护液舱舱壁对爆炸破片的防御作用[J]. 爆炸与冲击, 2010, 30(4):395-400.XU Shuang-xi, WU Wei-guo, LI Xiao-bin, et al. Protective effect of guarding fluid cabin bulkhead under attacking by explosion fragments[J]. Explosion and Shock Waves, 2010, 30(4):395-400.
[8] 沈晓乐, 朱锡, 侯海量, 等. 高速破片侵彻防护液舱试验研究[J]. 中国舰船研究, 2011, 6(3):12-15.SHEN Xiao-le, ZHU Xi, HOU Hai-liang, et al. Experimental study on penetration properties of high velocity fragment into safety liquid cabin[J]. Chinese Journal of Ship Research, 2011, 6(3):12-15.
[9] 孔祥韶, 吴卫国, 李俊, 等. 爆炸破片对防护液舱的穿透效应[J]. 爆炸与冲击, 2013, 33(5):471-478.KONG Xiang-shao, WU Wei-guo, LI Jun, et al. Effects of explosion fragments penetrating defensive liquid-filled cabins[J]. Explosion and Shock Waves, 2013, 33(5):471-478.
[10] 孔祥韶, 吴卫国, 刘芳, 等. 舰船舷侧防护液舱对爆炸破片的防御作用研究[J]. 船舶力学, 2014, 18(8):996-1004.KONG Xiang-shao, WU Wei-guo, LIU Fang, et al. Research on protective effect of guarding fluid cabin under attacking by explosion fragments[J]. Journal of Ship Mechanics, 2014, 18(8):996-1004.
[11] 张元豪, 陈长海, 侯海量, 等. 高速破片侵彻防护液舱后的水中运动特性试验研究[J]. 兵器材料科学与工程, 2016, 39(5):44-48.ZHANG Yuan-hao, CHEN Chang-hai, HOU Hai-liang, et al. Experimental study on kinetic characteristic of high velocity fragments in water after penetration of protecting liquid cabin[J]. Ordnance Material Science and Engineering, 2016, 39(5):44-48.
[12] 张婧. 舰船结构在爆炸作用下的非线性响应及可靠性研究[D]. 哈尔滨:哈尔滨工程大学, 2009.
[13] 吴林杰, 朱锡, 侯海量, 等. 空中近距爆炸下加筋板架的毁伤模式仿真研究[J]. 振动与冲击, 2013, 32(14):77-81.WU Lin-jie, ZHU Xi, HOU Hai-liang, et al. Simulations for damage modes of a stiffened plate subjected to close-range air-blast loading[J]. Journal of Vibration and Shock, 2013, 32(14):77-81.