主管单位:中国船舶重工集团公司
主办单位:中国舰船研究院、中国船舶信息中心
地址:北京市朝阳区科荟路55号院
邮编:100101
电话:010-83027274
传真:
E-Mail:
刊号:ISSN ISSN:1672-7649
        CN CN:11-1885/U
国内发行代号:
国际发行代号:
发行范围:国内外公开发布
定价:50元/册
定价:600元/年

您所在位置:首页->过刊浏览->2020年42卷2期



雷达隐身复合材料研究进展及在舰船上的应用
The research and application of radar wave stealth composites for warship
张磊1, 李永清2, 王静南1, 余彧1, 成天健1
点击:83次 下载:0次
DOI:
作者单位:1. 武汉海威船舶与海洋工程科技有限公司, 湖北 武汉 430065;
2. 海军工程大学 舰船工程系, 湖北 武汉 430033
中文关键字:雷达隐身;复合材料;舰船
英文关键字:radar wave stealth; composites; warship
中文摘要:本文简要综述雷达隐身复合材料的研究进展,介绍雷达隐身复合材料在舰船上的应用和发展现状,分析雷达隐身复合材料在舰船上应用存在的问题。最后,对我国舰船上雷达隐身复合材料的发展进行了展望。
英文摘要:This paper has briefly summarized the research of radar stealth composites,and also the application and development status of radar wave stealth composites in warship has been introduced,and the problem of radar stealth composites application for warship have been analyzed.Finally,the future development of radar wave stealth composites used in our warship is discussed and some advices are put forward.
2020,42(2): 144-149 收稿日期:2019-02-26
DOI:10.3404/j.issn.1672-7649.2020.02.028
分类号:V218
作者简介:张磊(1987-),男,硕士研究生,工程师,主要从事船用复合材料相关研究
参考文献:
[1] 张维俊. 舰船隐身技术的研究现状及发展趋势[J]. 造船技术, 2012(1):1-3
[2] CHOI J, JUNG H T. A new triple-layered composite for high-performance broadband microwave absorption[J]. Composites structures, 2015, 122:166-171
[3] LIU Haitao, CHENG Haifeng, TIAN Hao. Design, preparation and microwave absorbing properties of resin matrix composites reinforced by SiC fibers with different electrical properties[J]. Materials Science and Engineering:B, 2014, 179:17-24
[4] LIU Haitao, CHENG Haifeng, ZHANG Qiang. Design, preparation and microwave-absorbing properties of sandwich-structure radar-absorbing materials reinforced by glass and SiC fibres[J]. Materials Science Forum, 2014, 788:573-579
[5] DAVIDE M, CARMELO A, ROBERTO P, et al. Temperature, atomic oxygen and outgassing effects on dielectric parameters and electrical properties of nanostructured composite carbon-based materials[J]. Acta Astronautica, 2012, 76:127-135
[6] DAVIDE M, ROBERTO P, CARMELO A, et al. Broadband electromagnetic absorbers using carbon nanostructure-based composites[J]. IEEE Transactions on microwave theory and techniques, 2011, 59(10):2633-2645
[7] CHE B D, NGUYEN L T T, NGUYEN B Q, et al. Effects of carbon nanotube dispersion methods on the radar absorbing properties of MWCNT/epoxy nanocomposites[J]. Macromolecular Research, 2014, 22(11):1221-1228
[8] CHE B D, NGUYEN B Q, NGUYEN L T T, et al. The impact of different multi-walled carbon nanotubes on the X-band microwave absorption of their epoxy nanocomposites[J]. Chemistry Central Journal, 2015, 9(1):1-13
[9] CHEN Mingxia, ZHU Yong, PAN Yubai, et al. Gradient multilayer structural design of CNTs/SiO2 composites for improving microwave absorbing properties[J]. Materials and design, 2011, 32:3013-3016
[10] SHEN Xiangqian, LIU Hongbo, WANG Zhou, et al. Microwave absorption properties of a double-layer absorber based on nanocomposite BaFel2Ol9/α-Fe and nanocrystallinea α-Fe microfibers[J]. Chinese physics B, 2014, 23(7):078101
[11] WEI Chunyu, SHEN Xiangqian, SONG Fuzhan, et al. Double-layer microwave absorber based on nanocrystalline Zn0.5Ni0.5Fe2O4/α-Fe microfibers[J]. Materials & Design, 2012, 35:363-368
[12] XIANG Jun, ZHANG Xionhui, SHEN Xiangqian, et al. Synthesis and characterization of FeCo/C hybrid nanofibers with high performance of microwave absorption[J]. Materials Research Bulletin, 2014, 60:589-595
[13] SHEN Xiangqian, SONG Fuzhan, YANG Xinchun, et al. Hexaferrite/α-iron composite nanowires:Microstructure, exchange-coupling interaction and microwave absorption[J]. Journal of Alloys and Compounds, 2015, 621:146-153
[14] XIANG Jun, CHU Yanqiu, SHEN Xiangqian, et al. Magnetic and microwave absorption properties of electrospun Co0.5Ni0.5Fe2O4 nanofibers[J]. Applied Surface Science, 2012, 263:320-325
[15] YANG Xinchun, WANG Zhou, SHEN Xiangqian, et al. Magnetic nanocomposite Ba-ferrite/α-iron hollow microfiber:A multifunctional 1D space platform for dyes removal and microwave absorption[J]. Ceramics International, 2014, 40(10):15585-15594
[16] HOU Zhirui, XIANG Jun, SHEN Xiangqian, et al. Microwave absorption properties of single-and double-layer absorbers based on electrospun nickel-zinc spinel ferrite and carbon nanofibers[J]. Journal of Materials Science:Materials in Electronics, 2018, 29(14):12258-12268
[17] SHEN Xiangqian, SONG Fuzhan, XIANG Jun, et al. Shape anisotropy, exchange-coupling interaction and microwave absorption of hard/soft nanocomposite ferrite microfibers[J]. Journal of the American Ceramic Society, 2012, 95(12):3863-3870
[18] SENG Lee Yeng, WE F H, RAHIM H A, et al. Design of multiple-layer microwave absorbing structure based on rice husk and carbon nanotubes[J]. Applied Physics A, 2017, 123(1):73
[19] XU Fenfang, MA Li, HUO Qisheng, et al. Microwave absorbing properties and structural design of microwave absorbers based on polyaniline and polyaniline/magnetite nanocomposite[J]. Journal of magnetism and magnetic materials, 2015, 374:311-316
[20] 宫元勋, 欧秋仁, 赵宏杰, 等. 吸波蜂窝复合材料的结构优化和吸波性能研究[C]//北京:第十七届全国复合材料学术会议, 2013:693-696.
[21] 赵宏杰, 宫元勋, 邢孟达, 等. 结构吸波材料多层阻抗渐变设计及应用[J]. 航宇材料, 2015, 4:19-22
[22] LUO Heng, XIAO Peng, HUANG Long, et al. Dielectric properties of Cf-Si3N4 sandwich composites prepared by gelcasting[J]. Ceramics international, 2014, 40:8253-8259
[23] FENG Jiang, ZHANG Yichen, WANG Peng, et al. Oblique incidence performance of radar absorbing honeycombs[J]. Composites Part B:Engineering, 2016, 99:465-470
[24] WANG Peng, ZHANG Yichen, CHEN Hailong, et al. Broadband radar absorption and mechanical behaviors of bendable over-expanded honeycomb panels[J]. Composites Science and Technology, 2018, 162:33-48
[25] 莫漫漫, 马武伟, 庞永强, 等. 基于拓扑优化设计的宽频吸波复合材料[J]. 物理学报, 2018, 67(21):217801
[26] SHEN Lihao, PANG Yongqiang, SHEN Yang, et al. Broadband radar absorbing sandwich structures with enhanced mechanical properties[J]. Results in Physics, 2018, 11:253-258
[27] DAVIDE M, ANTONIO V, ROBERTO Pe, et al. Synthesis and electromagnetic characterization of frequency selective radar absorbing materials using carbon nanopowders[J]. Carbon, 2014, 77:756-774
[28] DAVIDE M, ROBERTO P, ANDREA D, et al. Electromagnetic characterization of advanced nanostructured materials and multilayer design optimization for metrological and low radar observability applications[J]. Acta Astronautica, 2017, 134:33-40
[29] WANG Changxian, LEI Hongshuai, HUANG Yixing, et al. Effects of stitch on mechanical and microwave absorption properties of radar absorbing structure[J]. Composite Structures, 2018, 195:297-307
[30] YANG Zhaoning, LUO Fa, ZHOU Wancheng, et al. Design of a thin and broadband microwave absorber using double layer frequency selective surface[J]. Journal of Alloys and Compounds, 2017, 699:534-539
[31] NEERAJ G, SMITHA P, DHARMENDRA S, et al. Critical analysis of frequency selective surfaces embedded composite microwave absorber for frequency range 2-8 GHz[J]. Journal of Materials Science:Materials in Electronics, 2017, 28(2):1259-1270
[32] SUI Sai, MA Hua, PANG Yongqiang, et al. Topology optimization design of a lightweight ultra-broadband wide-angle resistance frequency selective surface absorber[J]. Journal of Physics D:Applied Physics, 2015, 48(21):215101
[33] FAN Shicheng, SONG Yaoliang. Bandwidth-enhanced polarization-insensitive metamaterial absorber based on fractal structures[J]. Journal of Applied Physics, 123(8):085110.
[34] SHEN Yang, PEI Zhibin, PANG Yongqiang, et al. Phase random metasurfaces for broadband wide-angle radar cross cross section reduction[J]. microwave and optical technology letters, 2015, 57(12):2813-2819
[35] SOMAK B, SAPTARSHI G, DEVKINANDAN C, et al. Bandwidth-enhanced dual-band dual-layer polarization-independent ultra-thin metamaterial absorber[J]. Applied Physics A, 2015, 118(1):207-215
[36] ZHU Jianfei, MA Zhaofeng, SUN Wujiong, et al. Ultra-broadband terahertz metamaterial absorber[J]. Applied Physics Letters, 2014, 105(2):021102
[37] ZHANG Jun, XIAO Peng, ZHOU Wei, et al. Preparation and microwave absorbing properties of carbon fibers/epoxy composites with grid structure[J]. Journal of Materials Science:Materials in Electronics, 2015, 26(2):651-658
[38] CHEN Qian, BIE Shaowei, YUAN Wei, et al. Low frequency absorption properties of a thin metamaterial absorber with cross-array on the surface of a magnetic substrate[J]. Journal of Physics D:Applied Physics, 2016, 49(42):425102
[39] YANG Zhaoning, LUO Fa, ZHOU Wancheng, et al. Design of a broadband electromagnetic absorbers based on TiO2/Al2O3 ceramic coatings with metamaterial surfaces[J]. Journal of Alloys and Compounds, 2016, 687:384-388
[40] TIAN Chunsheng, ZHOU Kai, GUAN Youlin. Application of Metamaterial Absorber in Antenna Stealth[J]. Key Engineering Materials, 2016, 707:125-130
[41] LI Yun, CHENG Haifeng, WANG Nannan, et al. Annealing effects on the microstructure, magnetism and microwave-absorption properties of Fe/TiO2 nanocomposites[J]. Journal of Magnetism and Magnetic Materials, 2019, 471:346-354
[42] LI Yun, CHENG Haifeng, WANG Nannan, et al. Magnetic and microwave absorption properties of Fe/TiO2 nanocomposites prepared by template electrodeposition[J]. Journal of Alloys and Compounds, 2018, 763:421-429
[43] SHEN Yang, ZHANG Jieqiu, PANG Yongqiang, et al. Broadband reflectionless metamaterials with customizable absorption-transmission-integrated performance[J]. Applied Physics A, 2017, 123(8):530
[44] SHEN Yang, ZHANG Jieqiu, MENG Yueyu, et al. Merging absorption bands of plasmonic structures via dispersion engineering[J]. Applied Physics Letters, 2018, 112(25):254103
[45] PANG Yongqiang, WANG Jiafu, MA Hua, et al. Spatial k-dispersion engineering of spoof surface plasmon polaritons for customized absorption[J]. Scientific Reports, 2016, 6:29429
[46] SHEN Xiaopeng, CUI Tiejun, diego M C, et al. Conformal surface plasmons propogating on ultrathin and flexible films[J]. Proceedings of the national Academy of Sciences, 2012, 110(1):40-45
[47] FIORE V, BELLA G DI, VALENZA A. Glass-basalt/epoxy Hybrid Composites for Marine Applications[J]. Materials & Design, 2010, 32(4):2091-2099
[48] SCOTT B, BRIAN J. Composite ship structures[R]. Washington, NSWC Carderock, 2013.
[49] ENSON J L. The AEM/S system, a paradigm-breaking mast, goes to sea[J]. Naval Engineering Journal, 1998, 110(4):99-103
[50] Stealth Machinery Frigates Admiral Gorshkov will be transferred to the navy in 2011.[EB/OL]. http://paralay.net/22350.html, 2010.
[51] 国船. 世界上最大的复合材料舰艇[EB/OL]. 船艇, 2011.
[52] 钱江, 李楠, 史文强. 复合材料在国外海军舰船上层建筑上的应用与发展[J]. 舰船科学技术, 2015, 37(1):234-237
[53] 李江涛, 罗凯, 曹明法. 复合材料及其在舰船中应用的最新进展[J]. 船舶, 2013, 24(1):10-16
[54] Anonymous. Stealth corvette commissioned into Indian Navy[J]. Ocean News & Technology, 2014, 20(10):35
[55] 印度海军首次将碳纤维复合材料应用于舰艇建造[J]. FRP/CM, 2015, 5. "
读者评论

      读者ID: 密码:   
我要评论:
国内统一连续出版物号:CN:11-1885/U |国内发行代码: |国际标准出版物号:ISSN:1672-7649 |国际发行代码:
主管单位:中国船舶重工集团公司  主办单位:中国舰船研究院、中国船舶信息中心
版权所有©2020舰船科学技术》编辑部 京ICP备11013578号
本系统由北京菲斯特诺科技有限公司设计开发 技术支持
您是本站第1824036名访问者