主管单位:中国船舶重工集团公司
主办单位:中国舰船研究院、中国船舶信息中心
地址:北京市朝阳区科荟路55号院
邮编:100101
电话:010-83027274
传真:
E-Mail:
刊号:ISSN ISSN:1672-7649
        CN CN:11-1885/U
国内发行代号:
国际发行代号:
发行范围:国内外公开发布
定价:50元/册
定价:600元/年

您所在位置:首页->过刊浏览->2021年43卷9期



AUV全局路径规划环境建模算法研究进展
Research progress of AUV global path planning environment modeling algorithm
郭银景1,3, 侯佳辰1, 吴琪1, 苑娇娇1, 吕文红2,3
点击:156次 下载:0次
DOI:
作者单位:1. 山东科技大学 电子信息工程学院,山东 青岛 266590;
2. 山东科技大学 交通学院,山东 青岛 266590;
3. 青岛黄海学院,山东 青岛 266555
中文关键字:自主式水下航行器;全局路径规划;环境建模算法;水下三维建模;海流影响
英文关键字:autonomous underwater vehicles; global path planning; environment modeling algorithm; underwater three-dimensional modeling; ocean currents
中文摘要:AUV的路径规划算法是AUV最为核心的技术之一。本文在分析AUV自主巡航技术背景的基础上,综述针对海底环境的全局路径规划环境建模方法的研究现状,并比较栅格法、拓扑法和可视图法的优缺点;讨论了国内外学者在探索海流对AUV全局路径规划环境建模影响方面的研究进展。基于对AUV海流影响研究现状,展望了该领域的发展方向,并给出了2种考虑洋流影响的AUV全局路径规划环境建模算法。
英文摘要:AUV path planning algorithm is one of the core technologies of AUV. Based on the analysis of the background of AUV autonomous cruise technology, the paper summarizes the research status of the global path planning environment modeling method for the seabed environment, and compares the advantages and disadvantages of the grid method, topology method and viewable method; Scholars' research progress in exploring the impact of ocean currents on AUV global path planning environment modeling. Based on the current status of research on the impact of AUV currents, the paper looks forward to the direction of development in this field, and gives two AUV global path planning environment modeling algorithms that consider the impact of ocean currents.
2021,43(9): 12-18 收稿日期:2020-11-18
DOI:10.3404/j.issn.1672-7649.2021.09.003
分类号:TP24
基金项目:山东省重点研发计划(公益类专项)项目(2018GHY115022),国家自然科学基金资助项目(61471224)
作者简介:郭银景(1996-),男,博士,教授,研究方向为AUV导航与控制、无线通信
参考文献:
[1] 朱大奇, 胡震. 深海潜水器研究现状与展望[J]. 安徽师范大学学报(自然科学版), 2018, 41(3): 205–216
[2] 郭银景, 刘琦, 鲍建康, 等. 基于人工势场法的AUV避障算法研究综述[J]. 计算机工程与应用, 2020, 56(4): 16–23
[3] ZHANG Honghan, GONG Liming, CHEN Tao, et al. Global path planning methods of UUV in coastal environment[C]//2016 IEEE International Conference on Mechatronics and Automation, Harbin, 2016, 1018-1023.
[4] LI Daoliang, WANG Peng, DU Ling. Path planning technologies for autonomous underwater vehicles-A review[J]. IEEE Access, 2019, 7: 9745–9768
[5] 曹俊, 胡震, 刘涛, 等. 深海潜水器装备体系现状及发展分析[J]. 中国造船, 2020, 61(1): 204–218
[6] SAHOO A, DWIVEDY S K, Robi P S. Advancements in the field of autonomous underwater vehicle[J]. Ocean Engineering, 2019, 181: 145–160
[7] 张世童, 张宏伟, 王延辉, 等. 自主水下航行器导航技术发展现状与分析[J]. 导航定位学报, 2020, 8(2): 1–7
[8] 李硕, 唐元贵, 黄琰, 等. 深海技术装备研制现状与展望[J]. 中国科学院院刊, 2016, 31(12): 1316–1325
[9] ZHAO Yijing, ZHENG Zheng, LIU Yang. Survey on computational-intelligence based UAV path planning[J]. Knowledge-based SYSTEMS, 2018, 158: 54–64
[10] SONG Y S, ARSHAD M R. Coverage path planning for underwater pole inspection using an autonomous underwater vehicle[C]//IEEE International Conference on Automatic Control and Intelligent Systems(I2CACIS), Shah Alam, Malaysia, 2016, 230-235.
[11] YAO Xuliang, WANG Feng, WANG Jingfang. Bilevel optimization-based time-optimal path planning for AUVs[J]. Sensors, 2018, 18(12): 1–16
[12] 姚鹏, 王琨. 基于最小一致性的自治式水下机器人路径规划[J]. 无人系统技术, 2019, 2(4): 8–14
[13] 邢炜. 基于前视声呐的AUV避障方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
[14] 孙奥林, 曹翔, 肖旭, 等. 基于生物启发神经网络的多AUV目标搜索[J]. 舰船电子工程, 2019, 39(3): 32–36
[15] SUN Bing, ZHU Daqi, TIAN Chen, et al. Complete coverage autonomous underwater vehicles path planning based on glasius bio-inspired neural network algorithm for discrete and centralized programming[J]. IEEE Transactions on Cognitive and Developmental Systems, 2018, 11(1): 73–84
[16] 张楠楠. 水下机器人路径规划与路径跟踪方法研究[D]. 镇江: 江苏科技大学, 2019.
[17] 夏卫星, 杨晓东. 水下平台三维航路多约束多指标规划的蚁群策略研究[J]. 兵工学报, 2018, 39(9): 1795–1803
[18] CHIEN R T, ZHANG L, ZHANG B. Planning collision-free path for robotic arm among obstacles[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1984, 1(6): 91–96
[19] 陈中悦. 分布式水声网络状态一空间建模与目标检测跟踪[D]. 杭州: 浙江大学, 2019.
[20] TOMAS L P, MICHAEL A W. An algorithm for planning collision-free paths among polyhedral obstacles[J]. Communications of the ACM, 1979, 22(5): 436–450
[21] 包昕幼. 浅水区域无人探测艇编队巡航路径规划研究[D]. 广州: 华南理工大学, 2018.
[22] 王芳. 基于量子蚁群算法的多无人机协同航迹规划研究[D]. 哈尔滨: 哈尔滨工程大学, 2015.
[23] CANDELORO M, LEKKAS A M, SORENSEN A J. A Voronoi-diagram based dynamic path-planning system for underactuated marine vessels[J]. Control Engineering Practice, 2017, 61: 41–54
[24] 夏娜, 束强, 赵青, 等. 基于维诺图和二分图的水面移动基站路径规划方法[J]. 自动化学报, 2016, 42(8): 1185–1197
[25] 张雪莲. 基于深度学习的无人水下航行器动态规划方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.
[26] LIU Xing, ZHANG Mingjun, ROGERS E. Trajectory tracking control for autonomous underwater vehicles based on fuzzy re-planning of a local desired trajectory[J]. IEEE Transactions on Vehicular Technology, 2019, 68(12): 11657–11667
[27] 苗润龙, 庞硕, 姜大鹏, 等. 海洋自主航行器多海湾区域完全遍历路径规划[J]. 测绘学报, 2019, 48(2): 256–264
[28] CAO Xiang, Sun Changyin, CHEN Mingzhi. Path planning for autonomous underwater vehicle in time-varying current[J]. IET Intelligent transport systems, 2019, 13(8): 1265–1271
[29] 马焱, 肖玉杰, 陈轶, 等. 基于改进烟花-蚁群算法的海流环境下水下无人潜航器的避障路径规划[J]. 导航与控制, 2019, 18(1): 51–59
[30] LI Juan, ZHANG Jianxin, ZHANG Honghan, et al. A predictive guidance obstacle avoidance algorithm for AUV in unknown environments[J]. Sensors, 2019, 19(13): 2862
[31] 张楠楠, 姜文刚, 窦刚. 改进蚁群算法在AUV三维路径规划中的研究[J]. 计算机工程与应用, 2019, 55(11): 265–270
[32] WEI Dunwei, WANG Feiran, MA Hongjiao. Autonomous path planning of AUV in large-scale complex marine environment based in swarm hyper-heuristic algorithm[J]. Applied Sciences-basel, 2019, 9(13): 1–22
[33] SHEN Jian, SHI Jing, XIONG Lu. A route planning method for underwater terrain aided positioning based on gray wolf optimization algorithm[C]//Intelligent Data Engineering and Automated Learning, Yangzhou, 2016: 126−133.
[34] ZHANG Lanyong, ZHANG Lei, LIU Sheng, et al. Three-dimensional underwater path planning based on modified wolf pack algorithm[J]. IEEE Access, 2017, 5: 22783–22795
[35] KHAN F A, KHAN S A, TURGUT D, et al. Optimizing resurfacing schedules to maximize value of information in UWSNs[C]// IEEE Global Communications Conference, Washington, DC, 2016: 1−5.
[36] YAO Peng, ZHAO Shiqiang. Three-dimensional path planning for AUV based on interfered fluid dynamical system under ocean current(June 2018)[J]. IEEE Access, 2018, 6: 42904–42916
[37] CHAO Nan, LIU Yongkuo, XIA Hong. Grid-based RRT* for minimum dose walking path-planning in complex radioactive environments[J]. Annals of Nuclear Energy, 2018, 115: 73–82
[38] JANSON L, ICHTER B, PAVONE. Deterministic sampling-based motion planning: Optimality, complexity, and performance[J]. International Journal of Robotics Reserch, 2018, 37(1): 46–61
[39] CARRERAS M, HERNANDEZ J D, VIDAL E. Online motion planning for underwater inspection[C]//IEEE/OES Autonomous Underwater Vehicles, Tokyo, Japan, 2016: 335−341.
[40] CARRERAS M, HERNANDEZ J D, VIDAL E. Sparus Ⅱ AUV-A hovering vehicle for seabed inspection[J]. IEEE Journal of Oceanic Engineering, 2018, 43(2): 344–355
[41] YU Lijun, WEI Zhizhong, WANG Zhengan, et al. Path optimization of AUV based on smooth-RRT algorithm[C]//IEEE International Conference on Mechatronics and Automation (ICMA), Takamatsu, Japan, 2017: 1498-1502.
[42] FRANCO S, ALEJANDRO R, SEBASTIAN V A, et al. Artificial potential fields for the obstacles avoidance system of an AUV using a mechanical scanning sonar[C]//IEEE/OES South American International Symposium on Ocean Engineering. Buenos Aires, Argentina, 2017: 1-6.
[43] DAS B, SUBUDHI B, PATI B B. Co-operative control of a team of autonomous underwater vehicles in an obstacle-rich environment[J]. Journal of Marine Engineering and Technology, 15(3): 135−151.
[44] 冯炜, 张静远, 王众, 等. 海洋环境下基于量子行为粒子群优化的时间最短路径规划方法[J]. 海军工程大学学报, 2017, 29(6): 72–77
[45] WANG Xiaowei, YAO Xuliang, ZHANG Le. Path planning under constraints and path following control of autonomous underwater vehicle with dynamical uncertainties and wave disturbances[J]. Journal of Intelligent and Robotic Systems, 2020 Article in Press.
[46] ZENG Zheng, SAMMUT K, LAMMAS A, et al. Imperialist competitive algorithm for AUV path planning in a variable ocean[J]. Applied Artificial Intelligence, 2015, 29(4): 402–420
[47] 姚绪梁, 王峰, 王景芳, 等. 一种时变洋流场下AUV最优能耗路径规划方法[J/OL]. 控制与决策: 1−9[2020-06-10]. https://doi.org/10.13195/j.kzyjc.2019.0072.
[48] HUANG Huan, ZHU Daqi, DING Feng. Dynamic task assignment and path planning for multi-AUV system in variable ocean current environment[J]. Journal of Intelligent and Robotic Systems, 2013, 74(3): 999–1012
[49] LIU Mingyong, XU Baogui, PENG Xingguang. Cooperative path planning for multi-AUV in time-varying ocean flows[J]. Journal of System Engineering and Electronics, 2016, 27(3): 612–618
[50] YU Caoyang, XIANG Xianbo, LAPIERRE L, et al. Robust magnetic tracking of subsea cable by AUV in the presence of sensor noise and ocean currents[J]. IEEE Journal of Oceanic Engineering, 2018, 43(2): 311–322
[51] 孙天龙. 考虑海流影响的AUV航路规划方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.
[52] 刘厂, 孙天龙, 张志强. 基于改进水平集的AUV时间最优航路规划方法[C]//第36届中国控制会议论文集, 辽宁, 2017: 784−789.
读者评论

      读者ID: 密码:   
我要评论:
国内统一连续出版物号:CN:11-1885/U |国内发行代码: |国际标准出版物号:ISSN:1672-7649 |国际发行代码:
主管单位:中国船舶重工集团公司  主办单位:中国舰船研究院、中国船舶信息中心
版权所有©2021舰船科学技术》编辑部 京ICP备11013578号
本系统由北京菲斯特诺科技有限公司设计开发 技术支持
您是本站第3080746名访问者