在船舶岸电系统中,当船岸并网预同步切换或负载功率变化时,电压、电流的突变及频率扰动等因素直接影响并网后的系统稳定性。针对此问题,提出一种基于二次反馈调节虚拟同步发电机(virtual synchronous generator,VSG)的岸电电源逆变器控制策略,在VSG控制算法中的有功频率控制环节增加角速度反馈调节以抑制功率变化,并在转子运动控制器上增加二次的转动惯量反馈调节以稳定频率,从而实现并网过程的平滑切换。对某低压船舶岸电系统的仿真实验分析表明,所提出的改进VSG控制策略能有效抑制并网过程和负载突变时的电压和电流突变,提高了岸电电源频率和功率的稳定性。
In the ship shore power system, when the ship shore grid connection is pre synchronous switching or the load power changes, the sudden change of voltage and current and frequency disturbance directly affect the system stability after grid connection. In order to solve this problem, this paper proposes a virtual synchronous generator (VSG) based on secondary feedback In the active frequency control part of VSG control algorithm, angular velocity feedback regulation is added to the active frequency control link of VSG control algorithm to suppress the power change, and the second moment of inertia feedback regulation is added to the rotor motion controller to stabilize the frequency, so as to realize smooth switching in the process of grid connection. The simulation results of a low-voltage ship shore power system show that the proposed improved VSG control strategy can effectively suppress the voltage and current mutation in the process of grid connection and load mutation, and improve the stability of frequency and power of shore power supply.
2022,44(8): 112-117 收稿日期:2021-01-09
DOI:10.3404/j.issn.1672-7649.2022.08.023
分类号:TM464
基金项目:江苏省研究生科研与实践创新计划项目(KYCX20_3146);江苏省科技成果转化专项资金项目(BA2019085);江苏省产业前瞻与共性关键技术项目资助(BE2018109)
作者简介:张磊(1994-),男,硕士研究生,研究方向为船舶岸电并网控制
参考文献:
[1] 徐长春. 绿色港口与船舶岸电技术探讨[J]. 技术与市场, 2016(4):132
[2] WINNES H, STYHRE L, FRIDELL E. Reducing GHG emissions from ships in port areas[J]. Research in Transportation Business and Management, 2015(17):73-82.
[3] 陈亚爱, 赵军伟, 周京华, 等. 单相并网/离网双模式逆变器控制策略综述[J]. 电气传动, 2020, 50(5):39-47
CHEN Ya-ai, ZHAO Jun-wei, ZHOU Jing-hua, et al. Single phase grid connected/off grid dual mode inverter control strategy overview[J]. Electric Drive, 2020, 50(5):39-47
[4] 黎金英, 邓玉辉, 艾欣. 基于VSG的微电网逆变器控制策略研究[J]. 宁夏电力, 2016(5):1-5
[5] MENG J, SHI X, FU C, et al. A high-performance nonlinear control strategy of three-phase VSG systems[J]. Zhongguo Dianji Gongcheng Xuebao/proceedings of the Chinese Society of Electrical Engineering, 2014, 34(6):863-871.
[6] 陶亮, 程军照, 王文玺, 等. 虚拟同步发电机参数设计及优化方法[J]. 电力系统保护与控制, 2018, 46(12):128-135
TAO Liang, CHENG Jun-zhao, WANG Wen-xi, et al. Parameter design and optimization method of virtual synchronous generator[J]. Power System Protection and Control, 2018, 46(12):128-135
[7] 王金华, 王宇翔, 顾云杰, 等. 基于虚拟同步发电机控制的并网变流器同步频率谐振机理研究[J]. 电源报, 2016, 14(2):25-31.
WANG Jin-hua, WANG Yu-xiang, GU Yun-jie, et al. Study on synchronous frequency resonance mechanism of grid connected converter based on virtual synchronous generator control[j]. Power Report, 2016, 14(2):25-31.
[8] 朱作滨, 黄绍平, 李振兴. 微网逆变器自适应阻尼系数VSG控制策略研究[J]. 控制工程:2021, 28(8):1628-1633.
ZHU Zuo-bin, HUANG Shao-ping, LI Zhen-xing. Research on adaptive damping VSG control strategy for microgrid inverter[J]. Control Engineering, 2021, 28(8):1628-1633.
[9] 李东东, 朱钱唯, 程云志, 等. 基于自适应惯量阻尼综合控制算法的虚拟同步发电机控制策略[J]. 电力自动化设备, 2017, 37(11):72-77
LI Dong-dong, ZHU Qian-wei, CHENG Yun-zhi, et al. Control strategy of virtual synchronous generator based on adaptive inertia damping integrated control algorithm[J]. Power Automation Equipment, 2017, 37(11):72-77
[10] 韩彦东, 李亚民, 崔鑫斌. 微源并网逆变器改进下垂控制策略研究[J]. 河南科技, 2019(7):41-43
[11] 凌远林. 基于VSG的分布式电源逆变器的自适应控制[J]. 节能, 2020, 39(4):5-9
LING Yuan-lin. Adaptive control of distributed generation inverter based on VSG[J]. Energy Saving, 2020, 39(4):5-9