为了更好地了解AUV水下对接技术,本文对AUV水下对接技术的现状进行梳理,介绍各个国家对于AUV水下对接系统的研究成果。同时,为进一步阐明AUV水下对接系统的结构,按照自动化实现难度对国内外的AUV水下对接系统进行归类总结。根据整个对接过程中使用的传感器、水下环境和需要的定位信息等因素,对国内外AUV水下对接系统的对接阶段进行划分,并分别讨论各个阶段所需要的导航传感器和定位信息。对于对接精度问题,从对接干扰、对接失误等方面阐述了AUV水下对接时存在的问题和解决方案,并归纳对接控制策略。最后结合AUV对接技术的最新成果,从多个方向探讨了其发展趋势。
In order to better understand AUV underwater docking technology, the current situation of AUV underwater docking technology is sorted out. The research results of AUV underwater docking system in various countries are introduced. At the same time, in order to further clarify the structure of AUV underwater docking system, the AUV underwater docking systems at home and abroad are classified and summarized according to the difficulty of automation. According to the factors such as sensors used in the whole docking process, underwater environment and required positioning information, the docking stages of AUV underwater docking system at home and abroad are divided, and the navigation sensors and positioning information required in each stage are discussed respectively. For the problem of docking accuracy, this paper expounds the problems and solutions of AUV underwater docking from the aspects of docking interference and docking error, and summarizes the docking control strategy. Finally, combined with the latest achievements of AUV docking technology, its development trend is discussed.
2023,45(5): 1-8 收稿日期:2022-05-26
DOI:10.3404/j.issn.1672-7649.2023.05.001
分类号:TP242.6
基金项目:中国科学院C类先导科技专项 (XDC30000)
作者简介:袁学庆(1970-),男,研究员,研究方向为水下机器人、检测技术、智能制造
参考文献:
[1] KRONEN D M. Docking the ocean explorer autonomous underwater vehicle using a low-cost acoustic positioning system and a fuzzy logic guidance algorithm[M]. Florida Atlantic University, 1997.
[2] PARK J Y, JUN B H. LEE P M. et al, Underwater docking approach of an under-actuated AUV in the presence of constant ocean current[J], IFAC Proceedings Volumes, 2010, 43(20): 5-10.
[3] STOKEY R. ALLEN B. AUSTIN T. et al. Enabling technologies for REMUS docking: an integral component of an autonomous ocean-sampling network[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 487–497
[4] STOKEY R, PURCELL M, FORRESTER N, et al. A docking system for REMUS, an autonomous underwater vehicle[C]// Oceans. IEEE, 2002.
[5] DAVIS D T. Precision control and maneuvering of the Phoenix autonomous underwater vehicle for entering a recovery tube[J]. Monterey, California: Naval Postgraduate School, 1997.
[6] 燕奎臣, 吴利红. AUV水下对接关键技术研究[J]. 机器人, 2007(3): 267–273
YAN K C, WU L H. Research on key technology of AUV underwater docking[J]. Robot, 2007(3): 267–273
[7] 孙叶义, 武皓微, 李晔, 等. 智能无人水下航行器水下回收对接技术综述[J]. 哈尔滨工程大学学报, 2019, 40(1): 1–11
SUN Y Y, WU H W, LI Y, et al. Review of underwater recovery and docking technology of intelligent unmanned underwater vehicle[J]. Journal of Harbin Engineering University, 2019, 40(1): 1–11
[8] 郑荣, 宋涛, 孙庆刚, 等. 自主式水下机器人水下对接技术综述[J]. 中国舰船研究, 2018, 13(6): 43–49+65
ZHENG R, SONG T, SUN Q, et al. Review on underwater docking technology of autonomous underwater vehicle[J]. Chinese Ship Research, 2018, 13(6): 43–49+65
[9] 杨咚. 水下无人航行器回收技术研究[J]. 科技广场, 2013(5): 117–182
[10] SINGH H, BELLINGHAM J G, HOVER F, et al. Docking for an autonomous ocean sampling network[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 498–514
[11] 曹和云, 倪先胜, 何利勇, 等. 国外潜载UUV布放与回收技术研究综述[J]. 中国造船, 2014, 55(2): 200–208
CAO H Y, NI X S, He L Y, et al. Review on the deployment and recovery technology of submarine-borne UUV[J]. China Shipbuilding, 2014, 55(2): 200–208
[12] 羊云石, 顾海东. AUV水下对接技术发展现状[J]. 声学与电子工程, 2013(2): 43–46
YANG Y S, GU H. Development status of AUV underwater docking technology[J]. Acoustic and Electronic Engineering, 2013(2): 43–46
[13] 许光. UUV水下对接技术发展现状与关键技术[J]. 声学与电子工程, 2019(4): 1–5+9
XU G. Development status and key technologies of UUV underwater docking technology[J]. Acoustics and Electronic Engineering, 2019(4): 1–5+9
[14] ALLEN B, AUSTIN T, FORRESTER N, et al. Autonomous docking demonstrations with enhanced REMUS technology[C]// OCEANS, IEEE, 2006.
[15] LI D J, CHEN Y H, SHI J G, et al. Autonomous underwater vehicle docking system for cabled ocean observatory network[J]. Ocean Engineering, 2005, 109: 127–134
[16] 林子淇. 水下机器人动力学建模与系统辨识技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2015.
[17] MCEWEN R S, HOBSON B W, MCBRIDE L, et al. Docking control system for a 54-cm-diameter (21-in) AUV[J]. IEEE, 2017.
[18] 陈伟, 索胜军, 边信黔, 等. 无人潜器光学引导回收技术的仿真研究[J]. 船舶工程, 2001(4): 32–35+3
CHEN W, SUO S J, BIAN X Q, et al. Simulation research on optically guided recovery technology of unmanned vehicle[J]. Ship Engineering, 2001(4): 32–35+3
[19] HU J, DAWSON D, VEDAGARBHA P. A singularity-free position tracking controller for induction motors: theory and experiments[C]//[IEEE International Conference on Control Applications - Albany, NY, USA, 1995: 985−990.
[20] ROQUE J P. Sensors and control in the underwater intercept and docking problems[J]. Monterey California Naval Postgraduate School, 1995.
[21] YAKIMENKO O A, HORNER D P, PRATT D G. AUV rendezvous trajectories generation for underwater recovery[C]// Conference on Control & Automation: IEEE, 2008.
[22] MAKI T, MATSUDA T, SAKAMAKI T, et al. AUV navigation with a single seafloor station based on mutual orientation measurements[C]// Proc. IEEE Symp Underwater Technology (UT) and 2011 Workshop Scientific Use of Submarine Cables and Related Technologies (SSC), IEEE, 2011.
[23] MORGADO M, OLIVEIRA P, SILVESTRE C. Design and experimental evaluation of an integrated USBL/INS system for AUVs[C]// IEEE International Conference on Robotics & Automation, IEEE, 2010.
[24] MCEWEN R S, HOBSON B W, MCBRIDE L, et al. Docking control system for a 54-cm-diameter(21-in) AUV[J], IEEE, 2008.
[25] 郝颖明, 朱枫, 欧锦军. 目标位姿测量中的三维视觉方法[J]. 中国图象图形学报, 2002(12): 1247–1251
HAO Y M, ZHU F, OU J J. 3d vision method for target pose measurement[J]. Journal of Image and Graphics, 2002(12): 1247–1251
[26] 朱枫, 何雷. 视觉位姿测量中单目视觉与双目立体视觉测量精度比较[J]. 仪器仪表学报, 2007, 28(S): 165–169
ZHU F, HE L. Comparison of measurement accuracy between monocular vision and binocular stereo vision in visual pose measurement[J]. Chinese Journal of Scientific Instrument, 2007, 28(S): 165–169
[27] 郝颖明, 朱枫, 欧锦军, 等. P3P位姿测量方法的误差分析[J]. 计算机工程与应用, 2008, 44(18): 239–242
HAO Y M, ZHU F, OU J J, et al. Error analysis of p3p pose measurement method[J]. Computer Engineering and Applications, 2008, 44(18): 239–242
[28] 严政. 在水中作操纵运动的多物体之间的相互作用力研究[D]. 上海: 上海交通大学.
[29] 庞永杰. 水下运动物体在相互接近过程中的水动力计算[J]. 船舶工程, 1997(5): 8−10+38.
PANG Y J. Hydrodynamic calculation of underwater moving objects in the process of approaching each other[J]. Ship Engineering, 1997(5): 8−10+38.
[30] 徐华舫. 亚、超音速定常位流的面元法[M]. 国防工业出版社, 1981.
[31] LANDWEBER L, CHWANG A T, GUO Z. Interaction between two bodies translating in an inviscid fluid[J]. Journal of Ship Research, 1991, 35(1): 1–8
[32] KAZI I H, CHWANG A T, YATES G T. Hydrodynamic interaction between a fixed and a floating cylinder[J]. International Journal of Offshore & Polar Engineering, 1998.
[33] 郑可为. 深潜救生艇自动对接过程控制方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2004.
[34] RAE G, SMITH S M, ANDERSON D T, et al. A fuzzy rule based docking procedure for autonomous underwater vehicles[C]// Oceans, IEEE, 1993.
[35] BYRNE K M. Real-time modeling of cross-body flow for torpedo tube recovery of the phoenix autonomous underwater vehicle(AUV)[J]. Thesis Collection, 1998.
[36] HUTCHINS R G, ROQUE J. Filtering and control of an autonomous underwater vehicle for both target intercept and docking[C]// IEEE Conference on Control Applications, IEEE, 1995.
[37] 李开飞. AUV水下对接关键技术及对接碰撞问题研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.
[38] 王香. 水下机器人对接作业中碰撞建模分析及控制[D]. 镇江: 江苏科技大学, 2020.
[39] FEEZOR M D, BLANKINSHIP P R, BELLINGHAM J G, et al. Autonomous underwater vehicle homing/docking via electromagnetic guidance[C]// Oceans'97 MTS/IEEE Conference Proceedings, IEEE, 2002.
[40] 邱威.?水下对接系统样机设计与实现 [D].?武汉:?华中科技大学,?2016.
[41] WU L, LI Y, SU S, et al. Hydrodynamic analysis of AUV underwater docking with a cone-shaped dock under ocean currents[J]. Ocean Engineering, 2014, 85(15): 110–126
[42] 辛传龙, 郑荣, 杨博. AUV水下对接系统设计与接驳控制方案研究[J]. 工程设计学报, 2021, 28(5): 633–645
XIN C L, ZHENG R, YANG B. Research on AUV underwater docking system design and connection control scheme[J]. Journal of Engineering Design, 2021, 28(5): 633–645