潜艇大舵角状态下的水动力性能与潜艇大机动状态下的操纵性能之间存在密切联系,基于STAR-CCM+中的RANS与DES求解器开展SUBOFF潜艇斜航工况下操舵水动力及绕流场数值预报研究,分析不同数值方法获得的潜艇纵向力、横向力、转首力矩以及潜艇绕流场随舵角的变化规律,以及相应的泄出涡系结构、流线分布和压力分布,揭示了潜艇操纵工况下水动力性能与绕流场间的内在联系。研究表明,DES方法在潜艇操纵工况下的水动力性能预报及流场细节捕捉方面优势明显,验证了其在研究潜艇大机动状态操纵性能方面的有效性。
Considering the close relationship between the hydrodynamic performance of the submarine with a larger rudder angle and its tight maneuverability, the numerical investigation of the steering hydrodynamics and flow fields of the SUBOFF submarine model under the oblique towing condition was performed by using the RANS and DES solvers in STAR-CCM+. The variation of the longitudinal force, lateral force, and yaw moment with the rudder angle, as well as the corresponding vortex system structure, streamline distribution and pressure distribution were analyzed. The internal relationship between the submarine hydrodynamic performance and the flow field was revealed. The study indicates that the DES method has obvious advantages in predicting the hydrodynamic performance and capturing the flow field details for the submarine under the maneuvering condition, which is proved to be an effective numerical method to study the tight maneuverability of the submarine.
2023,45(5): 9-14 收稿日期:2022-04-28
DOI:10.3404/j.issn.1672-7649.2023.05.002
分类号:U661.1
基金项目:国家自然科学基金资助项目(52171263);浙江省自然科学基金资助项目(LQ22E090003);宁波市科技局2025重大专项(2020Z076)
作者简介:郭海鹏(1988-),男,博士,讲师,研究方向为船舶操纵性数值预报。
参考文献:
[1] 周广礼, 欧勇鹏, 高霄鹏, 等. 潜艇操纵性预报研究现状与前景展望[J]. 中国造船, 2018, 59(3): 203–214
ZHOU Guang-li, OU Yong-peng, GAO Xiao-peng, et al. Progress and prospect of maneuverability prediction for submarine[J]. Shipbuilding of China, 2018, 59(3): 203–214
[2] 林雄伟, 胡大斌, 戴余良. 潜艇非线性运动研究综述[J]. 船舶力学, 2013, 17(Z1): 187–195
LIN Xiong-wei, HU Da-bin, DAI Yu-liang. Overview on the research of submarine nonlinear motion[J]. Journal of Ship Mechanics, 2013, 17(Z1): 187–195
[3] 张楠, 沈泓萃, 姚惠之. 潜艇阻力与流场的数值模拟与验证及艇型的数值优化研究[J]. 船舶力学, 2005(1): 1–13
[4] 张楠, 沈泓萃, 姚惠之. 用雷诺应力模型预报不同雷诺数下的潜艇绕流[J]. 船舶力学, 2009, 13(5): 688–696
ZHANG Nan, SHEN Hong-cui, YAO Hui-zhi. Prediction of flow around submarine at different Reynolds numbers with Reynolds stress model[J]. Journal of Ship Mechanics, 2009, 13(5): 688–696
[5] 张楠, 张胜利, 沈泓萃, 等. 带自由液面的艇/桨干扰特性数值模拟与验证研究[J]. 水动力学研究与进展A辑, 2012, 27(1): 94–99
ZHANG Nan, ZHANG Sheng-li, SHEN Hong-cui, et al. Numerical simulation of hull/propeller interaction with free surface[J]. Journal of Hydrodynamics (A), 2012, 27(1): 94–99
[6] 孙铭泽, 王永生, 张志宏, 等. 基于网格变形技术的全附体潜艇操纵性计算[J]. 武汉理工大学学报(交通科学与工程版), 2013, 37(2): 420–424
SUN Mingze, WANG Yongsheng, ZHANG Zhihong, et al. Numerical Simulation of Submrine Maneuverability Basedon Deformation Technology[J]. Journal of Wuhan University of Technology (Transportation Science & Engieering), 2013, 37(2): 420–424
[7] 庞永杰, 杨路春, 李宏伟, 等. 潜体水动力导数的CFD计算方法研究[J]. 哈尔滨工程大学学报, 2009, 30(8): 903–908
PANG Yong-jie, YANG Lu-chun, LI Hong-fei, et al. Approaches for predicting hydrodynamic characteristics of submarine objects[J]. Journal of Harbin Engineering University, 2009, 30(8): 903–908
[8] 焦玉超, 肖昌润. 潜艇X舵的布局优化[J]. 兵器装备工程学报, 2018, 39(3): 40–44+71
JIAO Yuchao, XIAO Changrun. Layout Optimization of Submarine X Rudder[J]. Journal of Ordnance Equipment Engineering, 2018, 39(3): 40–44+71
[9] 翟朔, 刘志华. 艇尾共翼型舵水动力和尾流场特征的数值计算研究[J]. 中国造船, 2019, 60(1): 109–119
ZHAI Shuo, LIU Zhihua. Numerical Research on Hydrodynamic Performance and Wake Flow of Conformal Rudder[J]. Ship Building of China, 2019, 60(1): 109–119
[10] MENTER F R, KUNTZ M, LANGTRY R. Ten years of industrial experience with the SST turbulence model[J]. Turbulence, Heat and Mass Transfer, 2003(4): 625–632
[11] GROVES N C, HUANG T T, CHANG M S. Geometric characteristics of DARPA suboff models: (DTRC Model Nos. 5470 and 5471)[R]. David Taylor Research Center, 1989.
[12] RODDY R F. Investigation of the stability and control characteristics of several configurations of the DARPA SUBOFF model (DTRC Model 5470) from captive-model experiments[R]. David Taylor Research Center Bethesda MD Ship Hydromechanics Department, 1990.