针对进江船型操纵性要求较高而半悬挂舵升力性能较低的问题,基于CFD方法,采用翼型优化设计、制流板优化设计、随边直尾化设计3种技术措施对一型“曼谷型”集装箱船的半悬挂舵进行升力性能优化。对比升力系数和阻力系数计算结果;考察舵面流动和端部流动,分析增升原因;结合阻力因素考虑,确定实船应用的优化舵系方案。结果表明:3种技术措施均可有效提高半悬挂舵的升力性能。通过对比原船型和目标船型的操纵性试验结果,验证了实船应用的优化舵系对于改善目标船型操纵性的作用。
Aiming at the high requirement of manoeuvrability while low lift performance of semi-spade rudder on the river-entering vessels, based on CFD method, applying three kind of technical measures including rudder profile optimization design, swash plates optimization design and flat tail design of trailing edge on the semi-spade rudder of a “Bangkok type” container vessel for enhancing rudder lifting performance, compare the results of lift coefficient and drag coefficient. Study the surface flow and ends flow of the rudder, analyze the causation of lift performance rise. Consider with the drag factor, determine the optimized rudder solution for the actual vessel. The results show the three kind of technical measures can effectively enhance the lift performance of semi-spade rudder. Comparison of the manoeuvrability test results between original vessel and object vessel verifies the effect of the optimized rudder solution for improving the manoeuvrability to the object vessel.
2023,45(5): 26-31 收稿日期:2022-08-23
DOI:10.3404/j.issn.1672-7649.2023.05.005
分类号:U664.36
基金项目:中船集团自立科技研发专项(202104Z)
作者简介:黎峰(1983-),男,研究员,研究方向为高性能舵开发设计及货物系固设计
参考文献:
[1] 周昭明. 单桨船两种舵型的舵力和操纵效果的比较试验[J]. 船舶工程, 1981(3): 10–17
ZHOU Z M. Comparison test of rudder force and manoeuvring effect between two rudder types of single screw ship[J]. Ship Engineering, 1981(3): 10–17
[2] 周广礼, 董文才, 姚朝帮. 半悬挂舵敞水水动力性能数值计算方法研究[C]//船舶水动力学学术会议论文集, 2013: 38−40.
ZHOU G L, DONG W C, YAO C B. Study on methods to evaluate hydrodynamic performance of semi-underhung rudder[C]// Proceedings of Ship Hydrodynamic, 2013: 38−40.
[3] 林友红. 半悬挂舵的敞水水动力性能与舵力预估方法研究[J]. 舰船电子工程, 2015, 35(10): 142–147
[4] LIU J L, HEKKENBERG R. Sixty years of research on ship rudders: effects of design choices on rudder performance[J]. Ships and Offshore Structures, 2017, 12(4): 495–512
[5] 李邦华, 蒋曙晖, 赵耀中, 等. 不同湍流模型在高效舵水动力计算中的适用性分析[J]. 船海工程, 2019, 48(4): 21–23
[6] 黎峰, 王亚磊, 蒋曙晖, 等. 随边扭曲舵的性能研究及应用[C]// 上海市船舶与海洋工程学会第五届青年科技论坛论文集, 2022: 77-88.
LI F, WANG Y L, JIANG S H, et al. Study on performances and application of twisted-trailing edge rudder [C]//The 5th Forum of Youth Science & Technology SSNAME, 2022: 77-88.
[7] 李邦华, 黎峰, 晋文菊, 等. 边界层网格尺度对高效舵水动力数值计算的影响[J]. 舰船科学技术, 2020, 42(2): 25–28
LI B H, LI F, JIN W J, et al. Research on impact of boundary layer grid scale in hydrodynamic performance computation of high effectiveness rudder[J]. Ship Science and Technology, 2020, 42(2): 25–28
[8] LIU J L, HEKKENBERG R. 3D RANS simulations of shallow water effects on rudder hydrodynamics[C]//ICMT2016, Harbin 2016: 16−18.
[9] 李邦华, 孙海素, 郭振强, 等. 基于CFD的高效舵多方案优化设计[J]. 舰船科学技术, 2021, 43(10): 51–56
LI B H, SUN H S, GUO Z Q, et al. Multi-plan optimization design of high effectiveness rudder with the CFD Method[J]. Ship Science and Technology, 2021, 43(10): 51–56
[10] 黎峰, 胡红斌, 李邦华, 等. 高性能舵的发展及技术现状[J]. 中国舰船研究, 2020, 15(3): 61–74
LI F, HU H B, LI B H, et al. Developments and current technology status of high performance rudders[J]. Chinese Journal of Ship Research, 2020, 15(3): 61–74
[11] 黎峰, 孙高鹏, 林兆东. “绿色海豚”38 000 DWT散货船舵系设计[J]. 船舶设计通讯, 2016, (S1): 24−28.
[12] 晋文菊, 顾剑刚, 李邦华. 基于舵机能力验证要求的舵系优化设计[J]. 舰船科学技术, 2019, 41(9): 95–99
JIN W J, GU J G, LI B H. Optimization design of rudder unit based on requirements of steering gear capacity verification[J]. Ship Science and Technology, 2019, 41(9): 95–99
[13] LÜCKE T, STRECKWALL H. Cavitation research on a very large semi spade rudder[C]//Proceedings of First International Symposium on Marine Propulsors. Tronheim, Norway: International Symposium on Marine Propulsors, 2009.
[14] GERMANISCHER LLOYD. Paper No. 05-1: Recommendations for Preventive Measures to Avoid or Minimize Rudder Cavitation [S]. GL Technical Publication.
[15] 欧礼坚, 马梓聪, 霍浩杰. 直尾舵的水动力性能分析研究[J]. 舰船科学技术, 2017, 39(3): 17–22
OU L J, MA Z C, HUO H J. Researches on hydrodynamic performances of tail plate rudder[J]. Ship Science and Technology, 2017, 39(3): 17–22
[16] GREITSCH L, ELJARDT G, KRUEGER S. Operation condition aligned ship design and evaluation[C]//1st International Symposium on Marine propulsors, Trondheim, Norway, 2009.
[17] 吴秀恒, 张乐文, 王仁康. 船舶操纵性与耐波性[M]. 北京: 人民交通出版社.