复合材料螺旋桨具有高比强度、高阻尼等特性,可有效提高螺旋桨推进效率,这种特性与制作工艺中的铺层方案存在相关性。针对P4119桨,建立复合材料螺旋桨模型,采用流固耦合数值模拟方法,对复合材料螺旋桨形变、应力分布与推进效率进行计算。结果表明,复合材料铺层角度对螺旋桨的弯扭耦合效应产生明显效果,载荷集中区域局部叶型剖面螺距发生改变,进而影响整个螺旋桨径向范围内的螺距、侧斜与纵倾的分布情况。铺层角度0°~90°时,最大应力值下降41.06%~42.90%,推力系数下降4.12%~5.85%,扭矩系数下降4.49%~7.52%,效率提升0.39%~1.8%。因此,复合材料螺旋桨在大载荷下运行时,工况会发生改变,桨叶会随工况产生较大变形,影响其推进性能。调整复合材料铺层角度,可改善桨叶变形情况。
Composite propellers have the characteristics of high specific strength and high damping, which can effectively improve the propeller propulsion efficiency. This characteristic is related to the layering scheme in the manufacturing process. For P4119 propeller, a composite propeller model was established, and the deformation, stress distribution and propulsion efficiency of the composite propeller were calculated by fluid-structure coupling numerical simulation method. The results show that the composite coating angle has a significant effect on the bending-torsion coupling effect of the propeller, and the pitch of the local profile changes in the load concentration area, which affects the distribution of pitch, lateral tilt and trim in the radial range of the whole propeller. When the layup angle is 0° to 90°, the maximum stress value decreases by 41.06%~42.90%, the thrust coefficient decreases by 4.12%~5.85%, the torque coefficient decreases by 4.49%~7.52%, and the efficiency increases by 0.39%~1.8%. Therefore, when composite propellers operate under large loads, the working conditions will change, and the blades will produce large deformation along with the working conditions, which will affect their propulsion performance. The deformation of blade can be improved by adjusting the coating angle of composite material.
2023,45(8): 20-25 收稿日期:2022-08-29
DOI:10.3404/j.issn.1672-7649.2023.08.005
分类号:TJ630.2;U661.313
作者简介:秦天腾(1995-),男,硕士研究生,助理工程师,研究方向为总体技术
参考文献:
[1] 王晓强, 龚正琦. 水下螺旋桨技术发展现状与展望[J]. 中国水运, 2021(4): 74–76
WANG Xiao-qiang, GONG Zheng-qi. Development status and prospect of underwater propeller technology[J]. China Water Transport, 2021(4): 74–76
[2] 胡晓强, 黄政, 刘志华. 复合材料螺旋桨弯扭耦合刚度特性分析[J]. 中国舰船研究, 2022, 17(1): 25–35
HU Xiao-qiang, HUANG Zhen, LIU Zhi-hua. Numerical analysis on bending-torsional coupling stiffness characteristics ofcomposite propeller[J]. Chinese Journal of Ship Research, 2022, 17(1): 25–35
[3] 洪毅, 赫晓东. 复合材料船用螺旋桨设计与CFD/FEM计算[J]. 哈尔滨工业大学学报, 2010, 42(3): 404–408
[4] 刘影, 张晶, 吴钦等. 复合材料螺旋桨水动力性能与结构响应数值研究[J]. 北京理工大学学报, 2021, 41(3): 266–273
[5] 黄政, 熊鹰, 孙海涛. 纤维铺层对复合材料桨变形规律的影响[J]. 舰船科学技术, 2013, 35(8): 119–122,128
HUANG Zheng, XIONG Ying, SUN Hai-tao. The impact of composite propeller's material stacking sequence on the deformation law[J]. Ship Science and Technology, 2013, 35(8): 119–122,128
[6] 杨光, 熊鹰, 黄政. 复合材料螺旋桨双向流固耦合计算[J]. 舰船科学技术, 2015, 37(10): 16–20
YANG Guang, XIONG Ying, HUANG Zheng. Computation of composite propeller's two-way fluid-structure coupling[J]. Ship Science and Technology, 2015, 37(10): 16–20
[7] 丁永乐. 复合材料螺旋桨结构与水弹性一体化优化设计[D]. 西安: 西北工业大学, 2019.
[8] 郑楠. 桨前射流对螺旋桨水动力噪声影响的研究[D]. 武汉: 华中科技大学, 2020.
[9] 刘成勇, 罗凯, 郭庆. 水下航行器对转螺旋桨性能预估[J]. 水下无人系统学报, 2017, 25(6): 437–442
LIU Cheng-yong, LUO Kai, GUO Qin. Performance prediction of contra-rotating propellers for undersea vehicle[J]. Journal of Unmanned Undersea Systems, 2017, 25(6): 437–442
[10] 敖翔. 非均匀来流下螺旋桨的流固耦合特性分析[D]. 哈尔滨: 哈尔滨工业大学, 2021.
[11] JESSUP S D. An experimental investigation of viscous aspects of propellerblade flow[D]. Washington: The Catholic University of America, 1989.
[12] 缪宇跃, 孙江龙. CFD敞水螺旋桨性能计算分析[J]. 中国舰船研究, 2011, 6(5): 63–68
MIAO Yu-yue, SUN Jiang-long. CFD Analysis of Hydrodynamic Performance of Propeller in Open Water[J]. Chinese Journal of Ship Research, 2011, 6(5): 63–68