FLNG液舱存储着大量危险液货,需要对其进行合理的疲劳评估。但目前其疲劳计算工况尚未有明确规定,有必要探究相关参数对疲劳损伤的影响并对规范中工况制定给出一些有参考价值的结论或建议。以满载状态下的某型FLNG为例,首先基于正交试验设计法拟定三向加速度系数的载荷组合工况,然后采用有限元软件对各工况下的液舱关键部位进行疲劳累积损伤计算,最后进行极差分析,归纳出三向加速度系数对不同位置处的热点应力范围及累积损伤结果的影响趋势。结果表明,垂向加速度系数及迎浪工况寿命占比的变化对疲劳累积损伤的影响较为显著。研究成果可为今后FLNG液舱疲劳计算工况的制定提供参考。
It is necessary to carry out a reasonable fatigue assessment for FLNG as a large amount of dangerous liquid cargo is stored in its tanks. However, the loading conditions for fatigue analyses have not been clearly defined at present, so it is important to study the influence of relevant parameters on fatigue damages and give some suggestions for the formulation of loading conditions. Taking some FLNG under full loading condition as an example, first of all, based on the orthogonal experiment design method, the combined loading conditions of three acceleration coefficients are given. Then, the cumulative fatigue damages at key positions under different conditions can be calculated with finite element software. Finally, by conducting range analysis, the influence law of the three parameters on the hot spot stress range and fatigue cumulative damage at different positions is obtained. The results indicate that the change of vertical acceleration coefficient and fraction of life time of 0o head wave condition has a significant effect on fatigue cumulative damage. The research results can provide reference for the formulation of fatigue loading conditions of FLNG tank in the future.
2023,45(8): 62-67 收稿日期:2022-06-10
DOI:10.3404/j.issn.1672-7649.2023.08.013
分类号:U662.2
作者简介:周涛(1988-),男,硕士研究生,研究方向为船舶工程结构强度与疲劳
参考文献:
[1] 薄玉宝. 浮式液化天然气(FLNG)技术在中国海上开发应用探讨[J]. 中国海洋平台, 2013, 28(3): 1–5
BO Y B. Floating liquefied natural gas(FLNG) technology in China offshore development application to discussion[J]. China Offshore Platform, 2013, 28(3): 1–5
[2] ZHAO W H, YANG J M, HU Z Q, et al. Numerical investigation on the hydrodynamic difference between internal and external turret-moored FLNG[J]. Journal of Shanghai Jiaotong University (Science), 2013, 18(5): 590–597
[3] 刘婷婷, 阮诗伦, 尹江洲, 等. 浮式液化天然气液货围护系统的失效模式分析[J]. 海洋工程装备与技术, 2014, 1(1): 50–54
LIU T T, RUAN S L, YIN J Z, et al. Failure modes analysis of box structure of the containment system in FLNG[J]. Ocean Engineering Equipment and Technology, 2014, 1(1): 50–54
[4] JOHN W, LONGLEY H. FLNG technology shows promise for stranded gas fields[J]. Offshore, 2009, 69(11)
[5] 叶冬青, 陆文俊, 季腾. FLNG船关键系统技术研究[J]. 中国水运(下半月), 2021, 21(11): 1–2
YE D Q, LU W J, JI T. Research on key system technology of FLNG[J]. China Water Transport, 2021, 21(11): 1–2
[6] 董问, 袁奕, 张正艺, 等. 晃荡载荷作用下LNG船B型独立液货舱支撑结构受力分析[J]. 舰船科学技术, 2019, 41(15): 17–22
DONG W, YUAN Y, ZHANG Z Y, et al. Force analysis of support structure of LNG independent Type B tank under sloshing loads[J]. Ship Science and Technology, 2019, 41(15): 17–22
[7] 刘志刚, 何炎平. FPSO转塔系泊系统的技术特征及发展趋势[J]. 中国海洋平台, 2006(5): 1–6
LIU Z G, HE Y P. The technical characteristics and development trend of FPSO turret mooring systems[J]. China Offshore Platform, 2006(5): 1–6
[8] 张玉奎, 钱笠君, 郑文青, 等. FLNG薄膜型液货舱结构强度分析[J]. 船舶工程, 2019, 41(9): 31–35
ZHANG Y K, QIAN L J, ZHENG W Q, et al. Strength analysis of FLNG membrane cargo hold structure[J]. Ship Engineering, 2019, 41(9): 31–35
[9] 刘奕谦, 张玉奎, 陈哲超, 等. FLNG结构设计若干关键技术问题分析[J]. 船舶工程, 2019, 41(S2): 167–170
LIU Y Q, ZHANG Y K, CHEN Z C, et al. Analysis of key technology in FLNG structural design[J]. Ship Engineering, 2019, 41(S2): 167–170
[10] 向琳玲, 刘加一, 阚涛, 等. FLNG热应力分析及其对结构强度的影响[J]. 舰船科学技术, 2017, 39(9): 71–76
XIANG L L, LIU J Y, KAN T, et al. Thermal stress and strength analysis of FLNG's structure[J]. Ship Science and Technology, 2017, 39(9): 71–76
[11] 中国船级社. 散装运输液化气体船舶构造与设备规范[S]. 北京: 人民交通出版社, 2018.
China Classification Society. Rules for construction and equipment of ships carrying liquefied gases in bulk[M]. Beijing: China Communications Press, 2018.
[12] ABS. GUIDE FOR BUILDING AND CLASSING LIQUEFIED GAS CARRIERS WITH INDEPENDENT TANKS[S]. Houston: American Bureau of Shipping, 2018.
[13] 丁乐声, 陈金龙, 张聪, 等. 柔性管缆限弯器等效弯曲刚度研究[J]. 船舶力学, 2021, 25(11): 1515–1522
DING L S, CHEN J L, ZHANG C, et al. Study on equivalent bending stiffness of flexible pipe and cable bend restrictor[J]. Journal of Ship Mechanics, 2021, 25(11): 1515–1522
[14] 阚涛. FLNG全船结构强度计算及疲劳强度分析[D]. 武汉: 华中科技大学, 2017.
[15] 中国船级社. 船体结构疲劳强度指南[S]. 北京: 人民交通出版社, 2021.