AUV在近水面的运动具有高度非线性、强耦合性以及时变性等特点。为使AUV在近水面低速航行时能够快速稳定下潜到指定深度,首先需要分析AUV近水面受到的海浪干扰,进而得到海浪干扰下AUV近水面的六自由度运动模型,分析其受随机海浪扰动产生的垂荡和横摇运动。提出直接控制和间接控制方法并以此设计AUV的运动姿态控制器,通过对比分析不同控制方法对AUV垂荡运动和横摇运动的影响,从快速性和稳定性判断各种方法的适用范围。
The motions of autonomous underwater vehicle near surface have the characteristics of high nonlinearity, strong coupling and time variability. In order to make the AUV dive quickly and stably to the specified depth when sailing near surface at low speed, it is necessary to analyze the wave influence on the Autonomous Underwater Vehicle near surface, then obtain the six degrees of freedom motion model of the AUV under the wave influence, and analyze the heave and roll motion caused by the random wave disturbance. The direct control and indirect control methods are proposed, and the motion attitude controllers of AUV sre designed. By comparing and analyzing the influence of different control methods on the heave motion and roll motion of AUV, the application scope of various methods is judged from the rapidity and stability.
2023,45(8): 90-96 收稿日期:2022-05-13
DOI:10.3404/j.issn.1672-7649.2023.08.018
分类号:TP23
基金项目:黑龙江省自然科学基金资助项目(LH2019E035);黑龙江省教育科学规划重点课题(GJB1320064);哈尔滨工程大学教育教学项目(JG2021B06)
作者简介:綦志刚(1976-),男,博士,高级实验师,研究方向为船舶运动控制、船舶航行姿态虚拟仿真技术
参考文献:
[1] 王永鼎, 王鹏, 孙鹏飞. 自主式水下机器人控制技术研究综述[J]. 世界科技研究与发展, 2021, 43(6): 636–648
[2] 杨清, 宿浩, 唐功友. 受扰欠驱动自主水下航行器的最优扰动抑制控制[J]. 中国海洋大学学报(自然科学版), 2017, 47(6): 139–145
[3] WRZOS-KAMINSKA M, PETTERSEN K Y, GRAVDAHL J T. Path following control for articulated intervention-AUVs using geometric control of reduced attitude - ScienceDirect[J]. IFAC-PapersOnLine, 2019, 52(16): 192–197
[4] YUE W, YUE S, WANG K, et al. Fuzzy controller used smoothing function for depth control of autonomous underwater vehicle[J]. Oceans. IEEE, 2016: 1–5.
[5] DAN L, WU H, LUO G. Simulation of 3D dynamic seas based on OpenGL[C]// 2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS), IEEE, 2016: 144–147.
[6] 沈祉怡, 赵冰化, 张晓蕾. 基于OpenGL的实时三维海浪可视化仿真[J]. 舰船电子工程, 2015, 35(7): 124–126
[7] 徐强, 章家岩, 杜翠翠. 基于遗传算法的水下机器人滑模变结构控制策略[J]. 安徽工业大学学报, 2016, 33(3): 261–265
[8] HANGIL J, MINSUNG K, SON-CHEOL Y. Second-order sliding-mode controller for autonomous underwater vehicle in the presence of unknown disturbances[J]. Nonlinear Dynamics, 2014(78): 183–196
[9] THOR I FOSSEN. Guidance and control of ocean vehicles[M]. Chichester: John Wiley & Sons, 1994.
[10] GERANMEHR B, NEKOO S R. Nonlinear suboptimal control of fully coupled non-affine six-DOF autonomous underwater [11]vehicle using the state-dependent Riccati equation[J]. Ocean Engineering, 2015, 96(1): 248–257
[11] 金鸿章, 张晓飞, 罗延明, 等. 零航速减摇鳍升力模型研究[J]. 海洋工程, 2007, 25(3): 83–87+114
[12] WANG M, ZENG B, WANG Q. Study of motion control and a virtual reality system for autonomous underwater vehicles[J]. Algorithms, 2021, 14(3): 93–113
[13] 廖瑛, 杨雅君, 王勇. 滑模控制的新型双幂次组合函数趋近律[J]. 国防科技大学学报, 2017, 39(3): 105–110
[14] HASSAN S M, ABOZIED M, KHAMIS A, et al. Non-linear modeling and simulation with 3-D animation for 6-DOF autonomous underwater vehicle[C]// 2018 26th International Conference on Systems Engineering (ICSE), IEEE, 2018: 1–7.