以保障海洋平台结构整体安全度,延长海洋平台使用寿命为目的,提出基于机器学习算法的海洋平台结构整体安全度评估方法。基于层次全息建模理论,从环境、技术状态、功能模块等6个角度出发,共选取22个评估指标构建海洋平台结构整体安全度评估指标体系;采集评估指标数据,利用数据清洗与转换等处理方法预处理指标数据。将海洋平台结构整体安全度划分为5个等级。利用机器学习算法中的卷积神经网络构建评估模型,将评估指标数据作为输入,指标数据特征提取与数据降维等过程输出海洋平台结构整体安全度评估等级。实验结果显示该方法指标数据利用率较高,可准确评估海洋平台结构整体安全度,提升海洋平台使用的安全性。
In order to ensure the overall safety of offshore platform structures and extend the service life of offshore platforms, a method for evaluating the overall safety of offshore platform structures based on machine learning algorithms is proposed. Based on the hierarchical holographic modeling theory, a total of 22 evaluation indicators are selected from six perspectives, including environment, technical status and functional modules, to build the overall safety evaluation index system of offshore platform structures. Collect the evaluation index data, and preprocess the index data using data cleaning and conversion. The overall safety degree of offshore platform structure is divided into five levels. The convolution neural network in the machine learning algorithm is used to build the evaluation model. The evaluation index data is used as input, and the process of index data feature extraction and data dimension reduction is used to output the overall safety evaluation grade of the offshore platform structure. The experimental results show that the index data utilization rate of this method is high, which can accurately evaluate the overall safety of the offshore platform structure and improve the safety of the offshore platform.
2023,45(8): 108-111 收稿日期:2022-12-02
DOI:10.3404/j.issn.1672-7649.2023.08.021
分类号:U663
基金项目:数据恢复四川省重点实验室开放基金资助项目(DRN19014);四川交通职业技术学院教学专项资助项目(2020-JP-14)
作者简介:唐德才(1985-),男,硕士,讲师/轮机长,研究方向为船舶与海洋工程及船舶电气
参考文献:
[1] 许飞凡, 李欣烨, 刘敬喜. 不同形状撞头作用下海洋平台管结构的承载性能试验研究[J]. 江苏科技大学学报(自然科学版), 2020, 34(6): 13–17
XU Fei-fan, LI Xin-ye, LIU Jing-xi. Experimental study on the load carrying capability of offshore tubular structures subjected to lateral indentation of different indenters[J]. Journal of Jiangsu University of Science and Technology(Natural Science Edition), 2020, 34(6): 13–17
[2] 施一丰, 邹家生, 赵宏权, 等. 海洋平台复杂结构焊接残余应力高效预测及焊接顺序优化[J]. 江苏科技大学学报(自然科学版), 2020, 34(3): 28–33
SHI Yi-feng, ZOU Jia-sheng, ZHAO Hongquan, et al. Efficient prediction of welding residual stress and welding sequence optimization of complex welded structures on offshore platforms[J]. Journal of Jiangsu University of Science and Technology(Natural Science Edition), 2020, 34(3): 28–33
[3] 邱少华. 导管架海洋平台整体结构海冰载荷环境下响应分析[J]. 船海工程, 2020, 49(4): 30–33
QIU Shao-hua. Response analysis on overall structure of the jacket platform under environment sea ice load[J]. Ship & Ocean Engineering, 2020, 49(4): 30–33
[4] 彭子祥, 焦柯, 王俊杰, 等. 基于贝叶斯网络的建筑结构安全评估模型[J]. 建筑技术, 2021, 52(10): 1213–1216
PENG Zi-xiang, JIAO Ke, WANG Jun-jie, et al. safety assessment model of building structure based on bayesian network[J]. Architecture Technology, 2021, 52(10): 1213–1216
[5] 潘友鹏, 李文贺, 张倩, 等. MARK Ⅲ型LNG模拟舱结构安全评估及优化设计[J]. 船舶工程, 2020, 42(9): 54–58
PAN You-peng, LI Wen-he, ZHANG Qian, et al. Structural safety assessment and optimization design for MARK Ⅲ type LNG mock-up[J]. Ship Engineering, 2020, 42(9): 54–58
[6] 杨绍坤, 汤劲松, 宫兆超. 一种非典型含裂纹结构安全性评估方法研究[J]. 应用力学学报, 2020, 37(3): 1206–1211+1400-1401
YANG Shao-kun, TANG Jin-song, GONG Zhao-chao. Study on a safety assessment method for atypical structures with cracks[J]. Chinese Journal of Applied Mechanics, 2020, 37(3): 1206–1211+1400-1401
[7] 王钰莹, 于海峰, 黎兵, 等. 如何利用开源工具分析fMRI数据: 基于多体素模式的有监督机器学习算法介绍[J]. 心理科学, 2022, 45(3): 718–724
WANG Yu-ying, YU Hai-feng, LI Bing, et al. How to analyze fMRI data with open source tools: an introduction to supervised machine learning algorithm for multi-voxel patterns analysis[J]. Journal of Psychological Science, 2022, 45(3): 718–724
[8] 吴斯琪, 曹颜玉, 张秀林, 等. 基于机器学习的海洋平台往复式压缩机故障诊断方法[J]. 流体机械, 2022, 50(9): 76–84
WU Si-qi, CAO Yan-yu, ZHANG Xiu-lin, et al. Fault diagnosis method for reciprocating compressor of offshore platform based on machine learning[J]. Fluid Machinery, 2022, 50(9): 76–84