以某气垫船推进装置为研究对象,以提高其推进效率为目标,开展推进装置气动力理论优化设计与风洞试验验证工作。首先,基于B样条参数化方法,对推进装置的导管外形进行参数化建模,获得B样条控制参数,并将其定义为优化设计变量;其次,基于试验设计方法DOE、B样条参数化方法和数值仿真方法,开展导管气动力优化设计,形成理论优化方案。最后,设计制作缩尺模型,开展风洞试验,进一步验证理论优化方案的可信度。研究表明:导管外形对其自身以及整个推进装置的气动性能影响明显;通过精细设计导管外形,可以获得更高的推进效率;优化导管外形之后,气垫船推进装置的推进效率明显提升,其中额定功率下的总推力可提高约3%。
Taking the propulsion system of a hovercraft as the object, and aiming at improving its propulsion efficiency, the aerodynamic optimization and wind tunnel test verification work were carried out in the paper. Firstly, based on the B-Spline parameterization method, the duct shape was parameterized, and the control parameters of B-Spline were obtained and defined as the optimization variables. Secondly, by combining the DOE (Design-of-Experiment), B-Spline parameterization and numerical simulation methods, the duct shape was optimized and the optimization scheme was put forward. Finally, the wind tunnel test was carried out to further verify the reliability of the optimization scheme. The results show that the duct shape has significant influence on the aerodynamic performance of itself and the whole propulsion system. By carefully designing the duct shape, higher propulsion efficiency can be obtained. In the paper,the total thrust of the propulsion system on a hovercraft can be increased by about 3% at the rated power through the duct shape optimization.
2023,45(8): 112-117 收稿日期:2022-03-13
DOI:10.3404/j.issn.1672-7649.2023.08.022
分类号:U661.1
作者简介:褚胡冰(1983-),男,高级工程师,研究方向为船舶总体设计
参考文献:
[1] 恽良. 气垫船原理与设计[M]. 北京: 国防工业出版社, 1990: 1–2.
[2] 仰泳, 张宗科. 高密度中低速全垫升气垫船越峰问题的探讨与实践[J]. 船舶, 2014(2): 15–21
YANG Y, ZHANG ZK. Discussion and practice about hump transition problem of high-density air medium-low speed ACV[J]. Ship & Boat, 2014(2): 15–21
[3] 马涛, 邬成杰. 气垫船整体性能与围裙气垫系统流体动力设计[M]. 北京: 国防工业出版社, 2012: 65−66.
[4] SZAFRAN K, SHCHERBONOS O, EJMOCKI D. Effects of duct shape on a ducted propeller thrust performance[J], Transaction of the Institute of Aviation, 4(237), 84–91.
[5] 叶坤, 叶正寅, 屈展. 涵道气动优化设计方法[J]. 航空动力学报, 2013, 28(8): 1828–1835
YE K, YE ZY, QU Z. Aerodynamic optimization method for duct design[J]. Journal of Aerospace Power, 2013, 28(8): 1828–1835
[6] CHU HB, HU JF, ZHANG HP, et al. Duct shape optimization of air ducted propeller on hovercraft[C] //Proceedings of the Thirtieth (2020) International Ocean and Polar Engineering Conference, 2020: 3615–3621.
[7] 刘沛清. 空气螺旋桨理论及其应用[M]. 北京: 北京航空航天大学出版社, 2006: 58–59.
[8] 项松, 王吉, 张利国, 等. 一种高效率螺旋桨设计方法[J]. 航空动力学报, 2015, 30(1): 136–141
XIANG S, WANG J, ZHANG LG., et al. A design method for high efficiency propeller[J]. Journal of Aerospace Power, 2015, 30(1): 136–141
[9] 焦予秦, 金承信, 郭琦. 导管螺旋桨气动性能的风洞试验研究[J]. 应用力学学报, 2008, 25(4): 660–663
JIAO YQ, JIN CX, GUO Q. Experimental research on aerodynamic performance of ducted-propeller[J]. Chinese Journal of Applied Mechanics, 2008, 25(4): 660–663
[10] 张涛, 杨晨俊, 宋保维. 基于MRF模型的对转桨敞水性能数值模拟方法探讨[J]. 船舶力学, 2010, 14(8): 847–853
ZHANG T, YANG CJ, SONG BW. Investigation on the numerical simulation method for the open-water performance of contra-rotating propellers based on the MRF model[J]. Journal of Ship Mechanics, 2010, 14(8): 847–853
[11] 薛帮猛, 张文升, 孙学卫, 等. 动力干扰下宽体客机机翼多目标优化设计[J]. 航空学报, 2019, 40(2): 59–69
XUE BM, ZHANG WS, SUN XW, et al. Multi-objective wing shape optimization for a wide-body civil aircraft in wingbody-pylon-powered nacelle configuration[J]. Acta Aeronautica et Astroautica Sinica, 2019, 40(2): 59–69
[12] 林学东, 胡向鹏, 王辉, 等. 低速风洞和高速风洞流场品质要求[S]. GJB 1179A-2012.
[13] 张晖, 肖京平, 李明, 等. 螺旋桨飞机带动力模型低速风洞试验方法[S]. GJB 6753-2009.
[14] 张德虎, 席胜, 田鼎. 典型翼型参数化方法的翼型外形控制能力评估[J]. 航空工程进展, 2014(5): 281–288
ZHANG DH, XI S, TIAN D. Geometry control ability evaluation of classical airfoil parametric methods[J]. Advances Aeronautical Science and Engineering, 2014(5): 281–288
[15] 马晓永, 范召林, 吴文华, 等. 基于NURBS方法的机翼气动外形优化[J]. 航空学报, 2011, 32(9): 1616–1621
MA XY, FAN LZ, WU WH. Aerodynamic shape optimization for wing based on non-uniform rational b-spline[J]. Acta Aeronautica et Astroautica Sinica, 2011, 32(9): 1616–1621
[16] 琚亚平, 张楚华. 利用试验设计方法建立翼型气动特性的人工神经网络模型[J]. 航空学报, 2010, 31(5): 893–898
JU YP, ZHANG CH. Artificial neural network model of airfoil aerodynamic performance using design of experiments[J]. Acta Aeronautica et Astroautica Sinica, 2010, 31(5): 893–898