作动器是主动控制的重要动力部件,用于船舶推进轴系主动控制的作动器对低频范围的输出力值有较高要求。本文以电磁作动器为研究对象,建立动力学模型,利用Ansoft Maxwell对该电磁作动器进行磁路优化分析,确定该电磁作动器具有最优磁路尺寸。通过电磁作动器仿真计算得到的电磁力大小与实际测试出的电磁力大小基本相等,证实该电磁作动器建模仿真方法的正确性。得到电磁作动器的最佳频率输出范围,说明电磁作动器具有低频大力值输出的特点。该作动器的优化方法及性能分析为船舶推进轴系等结构的低频大力值主动控制提供了理论及技术支撑。
The actuator is an important power component of active control, and the actuator used for active control of marine propulsion shafting has higher requirements for the output force in the low frequency range. In this paper, taking the electromagnetic actuator as the research object, the dynamic model is established, the magnetic circuit optimization analysis of the electromagnetic actuator is carried out by using Ansoft Maxwell, and the optimal magnetic circuit size of the electromagnetic actuator is determined. The electromagnetic force calculated by the electromagnetic actuator simulation is basically equal to the actual measured electromagnetic force, which confirms the correctness of the electromagnetic actuator modeling and simulation method,and obtains the optimal frequency output range of the electromagnetic actuator. It shows that the electromagnetic actuator has the characteristics of low frequency and large force output. The optimization method and performance analysis of the actuator provide theoretical and technical support for the low frequency large force active control of ship propulsion shafting and other structures.
2023,45(8): 129-135 收稿日期:2022-05-24
DOI:10.3404/j.issn.1672-7649.2023.08.025
分类号:U661.43;U664.43
基金项目:国家自然科学基金资助项目(51839005);船舶振动噪声重点实验室基金资助项目(6142204190309)
作者简介:张聪(1986-),女,博士,副教授,从事结构振动与控制研究
参考文献:
[1] 黄彩虹, 曾 京, 魏 来. 铁道车辆蛇行稳定性主动控制综述[J]. 交通运输工程学报, 2021, 21(1): 267–284
[2] 曹辉, 张卫华, 缪炳荣. 基于二系垂向作动器与压电作动器的动车组车体振动控制[J]. 交通运输工程学报, 2018, 18(3): 105–113
[3] 尚国清, 郭有松. 舰船振动隔离技术理论与应用研究进展[J]. 舰船科学技术, 2006, 28(1): 15–18
SHANG G Q, GUO Y S. Research progress on theory and application of ship vibration isolation technology[J]. Ship Science and Technology, 2006, 28(1): 15–18
[4] 康建云. 压电智能柔性结构振动主动控制研究[D]. 厦门: 厦门大学, 2019.
[5] METERED H, KOZEK M, ŠIKA Z. Vibration control of active vehicle suspension using fuzzy based sliding surface[J]. International Journal of Fuzzy Systems and Advanced Applications, 2015, 2: 41–48
[6] ULGEN D, ERTUGRUL O L, OZKAN M Y, Measurement of ground borne vibrations for foundation design and vibration isolation of a high-precision instrument[J]. Measurement, 2016, 93(1): 385–396.
[7] 徐鉴. 振动控制研究进展综述[J]. 力学季刊, 2015, 36(4): 547–564
XU J. Review on research progress of vibration control[J]. Quarterly Journal of Mechanics, 2015, 36(4): 547–564
[8] MOMENI M, FALLAH N, Meshfree finite volume method for active vibration control of temperature-dependent piezoelectric laminated composite plates[J]. Engineering Analysis with Boundary Elements, 2021, 130(1): 364–378.
[9] 张春良, 梅德庆, 陈子辰著. 振动主动控制及其应用(第一版)[M]. 哈尔滨: 哈尔滨工业大学出版社, 2011.
[10] XI L X, MING K R, HONG B Z, ZHI Y Z. Active vibration control of a time-varying shafting system using an adaptive algorithm with online auxiliary filter estimation[J]. Sound and Vibration, 2021, 513(1): 116430–1-13
[11] SURESH T, YU W. Stability analysis of active vibration of building structures using PD/PID control [J]. Engineering Structures. 2014, 81(1) : 208-218.
[12] BENASS L, ELLIOTT SJ, GARDONIO P. Active vibration isolation using an inertial actuator with local force feedback control[J]. Journal of Sound and Vibration. 2004, 276(1-2): 157-179.
[13] 王震, 孙玉东. 基于惯性作动器的管路系统振动主动控制研究[D]. 北京: 中国舰船研究院, 2014.
[14] 朱明刚, 刘志刚. 船用柴油发电机组振动主动控制研究[D]. 哈尔滨: 哈尔滨工程大学. 2012.
[15] 马建国, 帅长庚, 李彦. 主动控制用大输出力电磁作动器优化设计[J]. 应用力学学报, 2018, 35(1): 106–110
[16] MENG S, CHRISTOPHE Y, MARTIN A. M. G. Miniaturized PMMA ball valve micropump with cylindrical electromagnetic actuator[J]. Journal of Microelectronic Engineering, 2008, 85(5–6): 1104–1107
[17] WINBERG M, JOHANSSON S. Active vibration isolation in ships: a pre-analysis of sound and vibration problem[J]. International Journal of Acoustic and Vibration, 2005, 10(4): 175–196
[18] 孙红灵, 安峰岩. 一种基于双线圈单动磁体结构的惯性式激振器[P]. CN 204933923U, 2016.
[19] STANISLAS L G, MARCO A. Identification by means of a genetic algorithm of nonlinear damping and stiffness of continuous structures subjected to large-amplitude vibrations. Part I: single-degree-of-freedom responses[J]. Mechanical Systems and Signal Processing, 2021, 153(1): 107470–1-28
[20] KAI Y, WEI H T, LI Q L, DANIIL Y, JUN lei Wang. Active vibration isolation performance of the bistable nonlinear electromagnetic actuator with the elastic boundary[J]. Sound and Vibration, 2021, 31(1): 116588–1-15
[21] LI X H, WAN S K, YUAN J P, YIN Y J, HONG J. Active suppression of milling chatter with LMI-based robust controller and electromagnetic actuator[J]. Journal of Materials Processing Technology, 2021, 297(1): 117238–1-13