为确保光纤通信系统稳定运行,设计舰船光纤通信系统的安全态势预测模型,以提升安全态势预测效果。离散化处理连续型舰船通信系统数据,组建离散型观测样本集合;通过隐马尔可夫模型,依据离散型观测样本集合,建立安全态势预测模型;利用Baum-Welch学习算法,确定安全态势预测模型参数;通过Viterbi算法,计算威胁维指数、运行维指数、脆弱维指数的概率向量;以转置矩阵与概率向量相乘的方式,得到安全态势预测结果。实验证明:该模型可有效离散化连续型数据,并确定安全态势预测模型参数;该模型可精准预测舰船光纤通信系统的安全态势。
In order to ensure the stable operation of the optical fiber communication system, the ship optical fiber communication system security situation prediction model is designed to improve the security situation prediction effect. The data of continuous ship communication system are discretized, and the discrete observation sample set is established. A security situation prediction model is established by using hidden Markov model and discrete observation sample set. Baum-Welch learning algorithm was used to determine the parameters of the security situation prediction model. The probability vector of threat dimension index, operation dimension index and vulnerability dimension index was calculated by Viterbi algorithm. The security situation prediction result is obtained by multiplying the transposed matrix with the probability vector. Experiments show that the model can discretize continuous data effectively and determine the parameters of the security situation prediction model. This model can accurately predict the security situation of ship optical fiber communication system.
2023,45(8): 154-157 收稿日期:2022-11-04
DOI:10.3404/j.issn.1672-7649.2023.08.030
分类号:TN91
作者简介:李建(1982-),女,硕士,讲师,研究方向为电子信息通信
参考文献:
[1] 唐延强, 李成海, 宋亚飞. 基于改进粒子群优化和极限学习机的网络安全态势预测[J]. 计算机应用, 2021, 41(3): 768–773
TANG Yanqiang, LI Chenghai, SONG Yafei. Network security situation prediction based on improved particle swarm optimization and extreme learning machine[J]. Journal of Computer Applications, 2021, 41(3): 768–773
[2] 胡庆爽, 李成海, 路艳丽, 等. 基于分级优化置信规则库的网络安全态势预测方法[J]. 计算机工程, 2020, 46(12): 127–133
HU Qingshuang, LI Chenghai, LU Yanli, et al. Network security situation prediction method based on hierarchically optimized belief rule base[J]. Computer Engineering, 2020, 46(12): 127–133
[3] 熊中浩, 张伟, 杨国玉. 基于DBN的网络安全态势评估和态势预测建模研究[J]. 电子技术应用, 2021, 47(5): 35–39+44
XIONG Zhonghao, ZHANG Wei, YANG Guoyu. Research on network security situation assessment and situation prediction modeling based on DBN[J]. Application of Electronic Technique, 2021, 47(5): 35–39+44
[4] 张然, 刘敏, 张启坤, 等. 一种基于SA-SOA-BP神经网络的网络安全态势预测算法[J]. 小型微型计算机系统, 2020, 41(10): 2157–2163
ZHANG Ran, LIU Min, ZHANG Qikun, et al. Network security situation prediction algorithm based on SA-SOA-BP neural network[J]. Journal of Chinese Computer Systems, 2020, 41(10): 2157–2163
[5] 杨宏宇, 张旭高. 基于自修正系数修匀法的网络安全态势预测[J]. 通信学报, 2020, 41(5): 196–204
YANG Hongyu, ZHANG Xugao. Self-corrected coefficient smoothing method based network security situation prediction[J]. Journal on Communications, 2020, 41(5): 196–204
[6] 赵冬梅, 李志坚. 基于Transformer的网络安全态势预测[J]. 华中科技大学学报(自然科学版), 2022, 50(5): 46–52
ZHAO Dongmei, LI Zhijian. Network security situation prediction based on Transformer[J]. Journal of Huazhong University of Science and Technology(Nature Science Edition), 2022, 50(5): 46–52