为保障船舶在海上安全航行,提出人工智能在船舶航行数学建模中的应用。使用Maklink图论方法描述海上作业点分布,建立作业点Maklink连接图,生成船舶在作业水域内可航行网络图。建立船舶在海上作业区域航线规划数学模型,并设置约束条件;利用Dijkstra算法求解船舶在海上作业危险区域航线规划模型,得到船舶航行初始航线;利用人工智能算法内的蚁群优化算法对船舶航行初始航线实时优化处理,得到船舶航行最终航线,为船舶穿越海上作业区域实时导航。实验结果表明,该方法可有效生成船舶在作业水域航行网络图,得到初始航线并对初始航线优化处理,应用效果较佳。
In order to ensure the safe navigation of ships at sea, the application of artificial intelligence in mathematical modeling of ship navigation is proposed. Use Maklink graph theory to describe the distribution of offshore construction points, establish Maklink connection diagram of construction points, and generate navigable network diagram of ships in construction waters. Establish a mathematical model for the route planning of ships in the offshore construction area, and set constraints. The Dijkstra algorithm is used to solve the route planning model of ships in dangerous areas of offshore construction, and the initial route of ships is obtained. The ant colony optimization algorithm in the artificial intelligence algorithm is used to optimize the initial route of the ship in real time, and the final route of the ship is obtained, which is used for the real-time navigation of the ship crossing the offshore construction area. The experimental results show that this method can effectively generate the navigable network diagram of the ship in the construction waters, the initial route and the initial route can be better optimized, and the application effect is better.
2023,45(8): 173-176 收稿日期:2022-12-01
DOI:10.3404/j.issn.1672-7649.2023.08.034
分类号:TP391
作者简介:白灵(1991-),女,硕士,讲师,研究方向为应用数学
参考文献:
[1] 杨琪森, 王慎执, 桑金楠, 等. 复杂开放水域下智能船舶路径规划与避障方法[J]. 计算机集成制造系统, 2022, 28(7): 2030–2040
YANG Qisen, WANG Shenzhi, SANG Jinnan, et al. Path planning and real-time obstacle avoidance methods of intelligent ships in complex open water environment[J]. Computer Integrated Manufacturing Systems, 2022, 28(7): 2030–2040
[2] 谢新连, 刘超, 魏照坤. 海洋气象环境影响下的复杂水域船舶路径规划[J]. 重庆交通大学学报(自然科学版), 2021, 40(2): 1–7+20
XIE Xinlian, LIU Chao, WEI Zhaokun. Ship path planning in complex water areas under the influence of marine meteorological environment[J]. Journal of Chongqing Jiaotong University (Natural Science), 2021, 40(2): 1–7+20
[3] 闫兆进, 杨慧. 基于多源数据和船舶停留轨迹语义建模的港口目标识别[J]. 地球信息科学学报, 2022, 24(9): 1662–1675
YAN Zhaojin, YANG Hui. Harbor detection based on multi-source data and semantic modeling of ship stop trajectory[J]. Journal of Geo-Information Science, 2022, 24(9): 1662–1675
[4] 陈影玉, 索永峰, 杨神化. 基于灰狼优化支持向量回归的船舶航迹预测[J]. 上海海事大学学报, 2021, 42(4): 20–25, 46.
CHEN Yingyu, SUO Yongfeng, YANG Shenhua. Ship trajectory prediction based on grey wolf optimization support vector regression[J]. Journal of Shanghai Maritime University, 2021, 42(4): 20–25, 46.
[5] 陈新, 袁宇浩, 饶丹. 一种改进A~*算法在无人船路径规划中的应用[J]. 计算机仿真, 2021, 38(3): 277–281
CHEN Xin, YUAN Yuhao, RAO Dan. Improved A* algorithm and its application in path planning of unmanned surface vehicle[J]. Computer Simulation, 2021, 38(3): 277–281
[6] 牟红梅, 胡青. 基于神经网络的异常船舶航迹特征因子模型[J]. 科学技术与工程, 2021, 21(34): 14610–14617
MO Hongmei, HU Qing. Characteristic factor model of abnormal ship track based on neural network[J]. Science Technology and Engineering, 2021, 21(34): 14610–14617