本文采用SST k-ω湍流模型和Z-G-B空化模型研究前置定子导管桨的空化特性。通过对比DTMB4381螺旋桨的空化数值计算结果与实验,验证数值计算的准确性和可靠性,分析前置定子导管桨不同空化数下空化特性。结果表明,空化数大于3时水动力性能基本不变。随着空化数的继续减小,前置定子导管桨的水动力性能明显下降。空化数为4时最先在叶顶间隙靠近尾缘端出现空化,这是叶顶泄漏涡导致的空化。空化数为3.5时在叶片吸力面出现空化,随着空化减小由转子叶顶尾缘向导边和叶根扩大。
This paper using SST k-ω turbulence model and Z-G-B mass transfer cavitation model studied cavitation characteristics of ducted propeller with pre-swirl stators. From comparison of numerical results of DTMB4381 propeller with experiment, the numerical approach for cavitation was validated. Results showed that hydrodynamic characteristic nearly unaltered when cavitation number was above 3. With decreasing of the cavitation number, hydrodynamic characteristic became worse. When cavitation number was 4, cavitation pattern occurred at tip clearance of rotors near the trail, due to leakage vortex. Moreover, suction surface became cavitation when cavitation number was 3.5. With decreasing of the cavitation number, the range of cavitation pattern extended from tip to root.
2019,41(12): 20-24 收稿日期:2019-10-21
DOI:10.3404/j.issn.1672-7649.2019.12.005
分类号:U661.31;U664.33
作者简介:李生(1979-),男,工程师,主要从事船舶水动力性能研究
参考文献:
[1] RHEE S. H., KAWAMURA T., LI H. Y. Propeller cavitation study using an unstructured grid based navier-stoker solver[J]. ASME J. Fluids Eng., 2005, 127: 986–994
[2] BENSOW R. E., BARK G. Implicit LES predictions of the cavitating flow on a propeller[J]. ASME J. Fluids Eng., 2010, 132: 041302
[3] JI Bin, LUO Xianwu, WANG Xin, et al. Unsteady numerical simulation of cavitating turbulent flow around a highly skewed model marine propeller[J]. ASME J. Fluids Eng., 2011, 133: 011102
[4] JI Bin, LUO Xianwu, WU Yulin, et al. Partially-averaged navier-stokes method with modified k-ε model for cavitating flow around a marine propeller in a non-uniform wake[J]. International Journal of Heat and Mass Transfer, 2012, 55(23–24): 6582–6588
[5] KAEWKHIAW P, TIAPLE Y, DECHAUMPHAI P. Application of nonlinear turbulence models for marine propulsors[J]. ASME J. Fluids Eng., 2011, 133: 031101
[6] 杨琼方, 王永生, 余亮琴, 等. 艇尾实尺桨空化初始航速和高频噪声谱的工程预报[J]. 振动与冲击, 2013, 32(15): 71–76
[7] 杨琼方, 王永生, 张志宏. 非均匀进流对螺旋桨空化水动力性能的影响[J]. 水动力学研究与进展, 2011, 26(5): 538–550 YANG Qiong fang, WANG Yong sheng, ZHANG Zhi hong. Effect of non-uniform inflow on propeller cavitation hydrodynamics[J]. Chinese Journal of Hydrodynamics, 2011, 26(5): 538–550
[8] 杨琼方, 王永生, 张志宏. 螺旋桨空化初生的判定和空化斗的数值分析[J]. 上海交通大学学报, 2012, 46(3): 410–416 YANG Qiong fang, WANG Yong sheng, ZHANG Zhi hong. Determination of propeller cavitation initial inception and numerical analysis of the inception bucket[J]. Journal of Shanghai Jiao Tong University, 2012, 46(3): 410–416
[9] 杨琼方, 王永生, 张志宏. 螺旋桨空化崩溃性能图谱的多相流模拟[J]. 华中科技大学学报(自然科学版), 2012, 40(2): 18–22 YANG Qiong fang, WANG Yong sheng, ZHANG Zhi hong. Multiphase flow simulation and propeller cavitation breakdown performance maps[J]. Journal of Huazhong University of Science and Technology(Nature Science), 2012, 40(2): 18–22
[10] 王顺杰, 程玉胜, 高鑫. 水下对转螺旋桨空化线谱频率预报与数值模拟[J]. 兵工学报, 2013, 34(3): 310–317
[11] 王顺杰, 王易川, 戴卫国, 等. 片空化状态下对转螺旋桨噪声特性仿真分析[J]. 船舶力学, 2014, 18(7): 778–785 WANG Shun jie, WANG Yi chuan, DAI Wei guo, et al. Numerical analysis for sheet cavitation noise characteristics of contra-rotating propeller[J]. Journal of Ship Mechanics, 2014, 18(7): 778–785
[12] 杨琼方, 王永生, 张志宏, 等. 伴流场中对转桨空化初生的判定与辐射噪声预报和校验[J]. 声学学报, 2014, 39(5): 589–604 YANG Qiong fang, WANG Yong sheng, ZHANG Zhi hong, et al. Numerical prediction of cavitation inception radiated noise of contra-rotating propeller with non-uniform inflow[J]. ACTA ACOUSICA, 2014, 39(5): 589–604
[13] 施瑶, 潘光, 王鹏, 等. 泵喷推进器空化特性数值分析[J]. 上海交通大学学报, 2014, 48(8): 1059–1064
[14] 鹿麟, 潘光. 泵喷推进器非定常空化性能数值模拟分析[J]. 上海交通大学学报, 2015, 49(2): 262–268 LU Lin, PAN Guang. Numerical simulation analysis of unsteady cavitation performance of a pump-jet propulsor[J]. Journal of Shanghai Jiao Tong University, 2015, 49(2): 262–268
[15] HUGHES M J, KINNAS S A. An analysis method for a ducted propeller with pre-swirl stator blades[C]. Propellers/Shafting’ 91 Symposium, 1991.