为了提高水面无人艇(Unmanned Surface Vessel,USV)通信的实时性和数据分发效率,本文提出一种基于边缘计算的无人艇通信数据分发机制(Communication Data Distribution Mechanism,CDDM)。首先,本文设计了一种基于边缘计算的USV通信架构,解决了多USV与多边缘服务器接入与匹配问题。其次,该方法通过最优数据分发和最优压缩数据逐步提高网络实时性,采用贪婪算法对数据压缩率构建的最优数据分发方程进行求解,得到全局最优数据压缩率和最优数据分发矩阵。仿真实验结果表明,CDDM比传统云计算机制的实时性更好。与现有2种先进算法相比,提出的CDDM在实时性和信息交付均有较大提升。因此,本文提出的算法具有更好的USV通信数据分发能力。
In order to improve the communication performance of unmanned surface vessel (USV) in both real-time and data delivery efficiency, this paper proposes an edge-computing-based communication data delivery mechanism (CDDM) for USV. Firstly, we establish a USV platform based on edge computing, figuring out the base station access and matching issues between multi-mobile base station and multi-USV. Then, the proposed method gradually improves real-time performance of USV network via the optimal data delivery (DD) and data compression (DC), and uses a greedy algorithm to solve the optimal equation of DD constructed by optimal data compression rate, we get the global optimal data compression rate and optimal data delivery matrix. Simulation experimental results show that, compared with conventional cloud computing, the CDDM gets a better real-time performance of data delivery. In addition, our method compares to two existing advanced approaches, our method greatly improves the performance of real-time performance and information delivery rate. Hence, the proposed mechanism has a better capability of USV communication data delivery.
2019,41(12): 93-98 收稿日期:2019-07-18
DOI:10.3404/j.issn.1672-7649.2019.12.019
分类号:TP393;TD166
作者简介:段懿洋(1988-),男,工程师,研究方向为舰船电子信息
参考文献:
[1] YANG Tingting, LIANG Hao, CHENG Nan, et al. Efficient scheduling for video transmissions in maritime wireless communication networks[J]. IEEE Transactions on Vehicular Technology, 2015, 64(9): 4215–4229
[2] Stojče Dimov ILČEV. Global Mobile Satellite Distress System (GMSDS) [M]. Cham: Springer, 2017: 373–465.
[3] RABAB AL-ZAIDI, John WOODS, Mohammed AL-KHALIDI, et al. Next Generation Marine Data Networks in an IoT Environment [C]// 2017 Second International Conference on Fog and Mobile Edge Computing, IEEE, 2017: 50–55.
[4] CHEN Xiang, HWANG Jenqneng, MENG De, et al. A quality-of-content-based joint source and channel coding for human detections in a mobile surveillance cloud[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27(1): 19–31
[5] AL-ZAIDI Rabab, JOHN C. WOODS, mohammed AL-KHALIDI Building novel VHF-based wireless sensor networks for the internet of marine things[J]. IEEE SENSORS JOURNAL, 2018, 18(5): 2131–2144
[6] MOHSIN R. J., WOODS J., SHAWKATM. Q. (AMDC) algorithm for wireless sensor networks in the marine environment[J]. International Journal of Advanced Computer Science and Applications, 2018, 6(6): 218–224
[7] 王立林, 刘俊. 基于多尺度卷积的船舶行为识别方法[J]. 计算机应用, 2019, 07(19): 1–7
[8] 李欣, 孙珊珊. 船联网数据分发的路径时延模型研究[J]. 舰船科学技术, 2018, 40(5A): 169–171
[9] 罗世亮, 任斌, 程良伦. 面向物联网的一种自适应实时数据分发机制[J]. 计算机应用研究, 2014, 31(5): 1539–1542