为实现三自由度欠驱动水面无人船在未知外界扰动下的轨迹跟踪,本文设计一种带扰动观测器的反步法轨迹跟踪控制器。首先,构造扰动观测器估计未知扰动,对纵荡以及首摇2个自由度方向上的控制量进行前馈补偿。然后,为增强系统抗扰动能力并加快误差收敛速度,将水面无人船位置误差的积分项引入控制系统,分别在运动学和动力学回路中构造虚拟控制律镇定跟踪误差,过程中结合神经动态模型技术,解决了传统反步法的微分爆炸问题,同时有效避免了控制过程中的控制不连续问题。最后,仿真实验验证了所设计控制器的有效性。
This paper studies the trajectory tracking problem of a 3 degree-of-freedom underactuated unmanned surface vehicle under unknown external disturbance, and a backstepping trajectory tracking controller incorporating a disturbance observer is proposed. Firstly, the disturbance observer is constructed to estimate the unknown disturbance, and feedforward compensation is made for the control variables in the corresponding directions. Then, in order to enhance the anti-disturbance ability of the system and accelerate the error convergence, the integral term of position error is introduced into the control system, and virtual controls are constructed in kinematics and dynamics circuits to stabilize the tracking error. In addition, the neural dynamic model technology is used to solve the problem of differential explosion, and the problem of control discontinuity in the process is effectively avoided. Finally, numerical simulation results are given to verify the practical feasibility of the proposed controller design.
2019,41(12): 127-132,139 收稿日期:2019-07-04
DOI:10.3404/j.issn.1672-7649.2019.12.026
分类号:U664;TP273
基金项目:国家自然科学基金资助项目(61873335,61833011);上海市东方学者特聘教授资助项目、江苏省青蓝工程中青年学术带头人资助项目、江苏省自然科学基金(BK20161361)等
作者简介:张凯(1993-),男,硕士研究生,主要研究船舶运动控制
参考文献:
[1] FOSSEN T I. Marine control systems: guidance, navigation and control of ships, rigs and underwater vehicles[M]. 2002.
[2] WANG N, SUN J C, ER M J. A novel extreme learning control framework of unmanned surface vehicles[J]. IEEE Transactions on Cybernetics, 2015, 46(5): 1106–1117
[3] 邱荷珍, 王磊, 王洪超. 船舶轨迹跟踪研究综述[J]. 实验室研究与探索, 2014, 33(4): 4–8
[4] PENG Y, YANG Y, CUI J, et al. Development of the USV ‘JingHai-I’ and sea trials in the Southern Yellow Sea[J]. Ocean Engineering, 2017, 131: 186–196
[5] FOSSEN T I, BERGE S P. Nonlinear veclorial backstepping design for global exponential tracking of marine vessels in the presence of actuator dynamics[C]//Proceeding of the 36th IEEE Conference on Design and Control. IEEE, 2002.
[6] SWAROOP D, HEDRICK J K, YIP P P, et al. Dynamic surface control for a class of nonlinear systems[J]. IEEE Transactions on Automatic Control, 2000, 45(10): 1893–1899
[7] YANG S X, MENG M. Real-time collision-free motion planning of a mobile robot using a neural dynamics-based approach[J]. IEEE Transactions on Neural Networks, 2003, 14(6): 1541–1552
[8] 潘昌忠. 基于神经动态模型的自治水面艇智能跟踪控制[D]. 长沙:中南大学, 2013.
[9] 朱齐丹, 马俊达, 刘可. 基于扰动观测器的无人水面船鲁棒轨迹跟踪[J]. 电机与控制学报, 2016, 20(12): 65–73
[10] 李冬琴, 蒋志勇, 赵欣. 多维随机不确定性下的船舶多学科稳健设计优化研究[J]. 船舶工程, 2015, 37(11): 61–66
[11] YAN Z, WANG J. Model predictive control for tracking of underactuated vessels based on recurrent neural networks[J]. IEEE Journal of Oceanic Engineering, 2012, 37(4): 717–726
[12] WANG N, ER M J, HAN M. Dynamic tanker steering control using generalized ellipsoidal-basis-function-based fuzzy neural networks[J]. IEEE Transactions on Fuzzy Systems, 2015, 23(5): 1414–1427
[13] FOSSEN T I. Handbook of Marine Craft Hydrodynamics and Motion Control[M]. New Jersey: John Wiley & Sons, 2011.
[14] 胡云艳. 欠驱动水面无人艇的航迹跟踪控制研究[D]. 哈尔滨:哈尔滨工程大学, 2011.