针对多障碍物环境下,传统智能算法容易过早收敛、搜索精准度差等问题,为提高路径规划准确性,获得最佳路径,避免碰撞发生,提出一种基于人工蜂群算法的水上无人艇路径规划方法。通过栅格法建模,以无人艇目的地为蜜源,在蜂群信息交换阶段,采用混沌序列产生初始化雇佣蜂,跳出局部最优。与传统人工蜂群算法进行对比,仿真结果表明,混沌蜂群算法在路径优化方面更能找到全局最优路径。
In this paper, the path planning problem of unattended boat USV on water is studied. aiming at the problem of safe navigation performance of unmanned boat on water in multi-obstacle environment, the traditional intelligent algorithm is easy to converge prematurely and the search accuracy is poor. In order to improve the accuracy of path planning, obtain the best path and avoid collision, a path planning method for unmanned boats on water based on artificial bee colony algorithm is proposed. Through grid modeling, taking the destination of unmanned boat as honey source, in the stage of bee colony information exchange, chaotic sequence is used to generate initial employment bee and jump out of local optimization. Compared with the traditional artificial bee colony algorithm, the simulation results show that the chaotic bee colony algorithm can find the global optimal path better in the aspect of path optimization.
2019,41(12): 173-176 收稿日期:2019-08-01
DOI:10.3404/j.issn.1672-7649.2019.12.033
分类号:U674.91
作者简介:兰莹(1985-),女,讲师,主要研究方向为非完整约束的多移动机器人协作编队控制
参考文献:
[1] 吴丰君. 多机器人路径规划[D]. 北京化工大学. 2011(05): 33-35.
[2] 郑佳春, 吴建华, 马勇, 等. 混合模拟退火与粒子群优化算法的无人艇路径规划[J]. 中国海洋大学学报(自然科学版), 2016, 46(09): 116–122
[3] 倪生科, 刘正江, 蔡垚, 等. 基于混合遗传算法得船舶避碰路径规划[J]. 上海海事大学学报, 2019, 40(01): 21–26
[4] Longwang YUE, Hanning CHEN. Unmanned vehicle path planning using a novel ant colony algorithm[J]. EURASIP Journal on Wireless Communications and Networking, 2019(1): 136
[5] 王鹏, 孟鹏, 宁腾飞. AUV巡航路径规划建模及仿真研究[J]. 计算机应用与软件, 2014(31): 268–270
[6] 田屏. 一种基于混沌搜索改进的人工蜂群算法[J]. 西南师范大学学报(自然科学版), 2018(07): 39–45
[7] KARABOGA Dcrvis. An idea based on honey bee swarm for numerical optimization[J]. Technical report-tr06 Erciyes University, Engineering Faculty, Computer Engineering Department, 2005: 213–223
[8] 黎竹娟. 人工蜂群算法在移动机器人路径规划中的应用[J]. 计算机仿真, 2012(29): 247–250
[9] 李端明, 程八一. 基于人工蜂群算法求解不同尺寸工件单机批调度问题[J]. 四川大学学报: 自然科学版, 2009(3): 657–662
[10] 郑永爱, 宣蕾. 混沌映射的随机性分析[J]. 计算机应用与软件, 2011(12): 276–276