水下仿生航行器因其低能耗、高机动性、低噪声、隐蔽性强和对周围环境友好等特点,现已成为仿生领域热点研究之一。本文以水生生物的2种推进力产生方式为分类标准,对高机动水下仿生航行器的发展情况进行概述。从已有相关研究中遴选了12种机动性能表现较突出的仿生水下航行器平台,分别介绍其结构、外形以及实现方式。通过对比分析可以得知,推进方式和结构设计等直接影响游速、转向机动性以及俯仰机动性的表现,在实际应用中需针对性地进行选择。
Underwater bionic vehicle has become a hot topic in the field of bionics, due to its low energy consumption, high mobility, low noise, good stealthiness, as well as low disturbance to the surroundings. This paper surveys the research progress of highly maneuverable bionic underwater vehicles according to the classification standard of two propulsion modes of aquatic organisms. Twelve kinds of representative bionic underwater vehicle platforms with prominent maneuverability are selected from the existing researches, and their structures, shapes, and implementation methods are introduced respectively. Through the comparative analysis, it is found that the propulsion mode and structure design directly affect the performance of moving speed, steering maneuverability, and pitching maneuverability, which requires a customized selection in real-world applications.
2020,42(12): 8-12 收稿日期:2020-08-31
DOI:10.3404/j.issn.1672-7649.2020.12.002
分类号:TJ630
作者简介:喻俊志(1975-),男,博士,教授,研究方向为水下仿生机器人与智能控制
参考文献:
[1] SALAZAR R, FUENTES V, ABDELKEFI A. Classification of biological and bioinspired aquatic systems: A review[J]. Ocean Engineering, 2018, 148(JAN. 15): 75-114
[2] 李成进. 仿生型水下航行器研究现状及发展趋势[J]. 鱼雷技术, 2016, 24(1): 1-7
LI Cheng-jing. Research status and development trend of bionic underwater vehicle[J]. Torpedo Technology, 2016, 24(1): 1-7
[3] SFAKIOTAKIS M, LANE D M, and DAVIES J B C. Review of fish swimming modes for aquatic locomotion[J]. IEEE J of Oceanic Engineering, 1999, 24(2): 237-252
[4] COLGATE J E and LYNCH K M. Mechanics and control of swimming: A review[J]. IEEE Journal of Oceanic Engineering, 2004, 29(3): 660-673
[5] WANG Y, PANG S, JIN H, et al. Development of a biomimetic scallop robot capable of jet propulsion[J]. Bioinspiration & Biomimetics, 2020, 15(3): 036008
[6] WANG Y, WANG Z, LI J. Initial design of a biomimetic cuttlefish robot actuated by SMA Wires[C]//2011 Third International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), IEEE Computer Society, 2011.
[7] LIAO P, ZHANG S, SUN D. A dual caudal-fin miniature robotic fish with an integrated oscillation and jet propulsive mechanism[J]. Bioinspiration & Biomimetics, 2018, 13(3): 036007
[8] TRIANTAFYLLOU M S, TRIANTAFYLLOU G S. An efficient swimming machine[J]. Scientific American, 1995, 273(3): 40-45, 48
[9] ZHEN X, WAN C, FAN R, et al. Artificial lateral line based local sensing between two adjacent robotic fish[J]. Bioinspiration & Biomimetics, 2017, 13(1): 016002
[10] CHEW C M, LIM Q Y, YEO K S. Development of propulsion mechanism for Robot Manta Ray[C]//IEEE International Conference on Robotics & Biomimetics. IEEE, 2016.
[11] GAO J, BI S, XU Y, et al. Development and design of a robotic manta ray featuring flexible pectoral fins[C]//IEEE International Conference on Robotics & Biomimetics. IEEE, 2008.
[12] STEFANINI C, OROFINO S, MANFREDI L, et al. A compliant bioinspired swimming robot with neuro-inspired control and autonomous behavior[C] IEEE International Conference on Robotics & Automation. IEEE, 2012.
[13] ZHONG Y, LI Z, DU R. A novel robot fish with wire-driven active body and compliant tail[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(4): 1633-1643
[14] CLAPHAM R J, HU H. iSplash-II: Realizing fast carangiform swimming to outperform a real fish[C]//IEEE/RSJ International Conference on Intelligent Robots & Systems. IEEE, 2014.
[15] SU Z, YU J, TAN M, et al. Implementing flexible and fast turning maneuvers of a multijoint robotic fish[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(1): 329-338
[16] ZHU J, WHITE C, WAINWRIGHT D K, et al. Tuna robotics: A high-frequency experimental platform exploring the performance space of swimming fishes[J]. Science Robotics, 2019, 4(34): eaax4615
[17] DU S, WU Z, and YU J. Design and yaw control of a two-motor-actuated biomimetic robotic fish[C]//2019 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2019.
[18] DU S, WU Z, WANG J, et al. Design and control of a two-motor-actuated tuna-inspired robot system[J] IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019.
[19] YU J, WU Z, SU Z, et al. Motion control strategies for a repetitive leaping robotic dolphin[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(3): 913-923
[20] WÖHL S, SCHUSTER S. The predictive start of hunting archer fish: A flexible and precise motor pattern performed with the kinematics of an escape C-start[J]. Journal of Experimental Biology, 2007, 210(2): 311-324