水下滑翔机依靠调节浮力实现升沉,借助水动力实现水中滑翔,可对复杂海洋环境进行长时续、大范围的观测与探测,在全球海洋观测与探测系统中发挥着重要作用,目前其应用领域已部分拓展至水下目标探测。本文综述水下滑翔机集群组网执行海洋环境观测和集群水下目标探测方面的应用现状,对水下滑翔机平台集成控制、人工智能技术应用、能源补给、水声通信等制约其集群水下探测能力提升的关键技术进行分析,对水下滑翔机技术未来的发展趋势进行了展望。
The underwater glider(UG) dives along a saw-tooth trajectory by adjusting the buoyancy and maintains its gliding mode by making use of hydrodynamic force. It can realize continuous observation and detection in long range and large scale in the complex ocean environment. Therefore, UG plays an increasingly important role in the novel global ocean observation and detection systems; At present, its application comprehension has been partially extended to underwater target detection. This paper summarizes the recent development status of UG cluster networking in marine environment observation and cluster underwater target detection, and the constraints technology on its cluster underwater detection were analyzed, such as integrated control of underwater glider platform, the application of artificial intelligence, energy supply, underwater acoustic communication. In addition, the development trend of UG application was prospected.
2020,42(12): 13-20 收稿日期:2020-09-08
DOI:10.3404/j.issn.1672-7649.2020.12.003
分类号:TP242;TJ630
作者简介:毛柳伟(1985-),男,博士,工程师,主要从事潜艇和航行器总体技术研究
参考文献:
[1] RUDNICK D L, DAVIS R E, ERIKSEN C C, et al. Underwater gliders for ocean research[J]. Marine Technology Society Journal, 2004, 38(2): 73-84
[2] RUDNICK D L. Ocean research enabled by underwater gliders[J]. Annual Review of Marine Science, 2016, 8: 519-541
[3] LIBLIK T, KARSTENSEN J, TESTOR P, et al. Potential for an underwater glider component as part of the global ocean observing system[J]. Methods in Oceanography, 2016, 17: 50-82
[4] LEONARD N E, PALEY D A, LEKIEN F, et al. Collective motion, sensor networks, and ocean sampling[C]. Proceedings of the IEEE, IEEE, 2007: 48-74.
[5] STOMMEL H. The Slocum mission[J]. Oceanography, 1989, 2(1): 22-25
[6] WEBB D C, SIMONETTI P J, JONES C P. Slocum: an underwater glider propelled by environmental energy[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 447-452
[7] ERIKSEN C C, OSSE T J, LIGHT R D, et al. Seaglider: a long-range autonomous underwater vehicle for oceanographic research[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 424-436
[8] SHERMAN J, DAVIS R E, OWENS W B, et al. The autonomous underwater glider "Spray"[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 437-446
[9] CLAUSTRE H, BEGUERY L. Seaexplorer glider breaks two world records[J]. Sea Technology, 2014, 55: 19-21
[10] 王延辉, 王树新, 谢春刚. 基于温差能源的水下滑翔器动力学分析与设计[J]. 天津大学学报: 自然科学与工程技术版, 2007, 40(2): 133-138
WANG Yan-hui, WANG Shu-xin, XIE Chun-gang. Dynamic analysis and system design on an underwater glider propelled by temperature difference energy[J]. Journal of Tianjin University, 2007, 40(2): 133-138
[11] 沈新蕊, 王延辉, 杨绍琼, 等. 水下滑翔机技术发展现状与展望[J]. 水下无人系统学报, 2018, 26(2): 89-106
SHEN Xin-rui, WANG Yan-hui1, YANG Shao-qiong, et al. Development of underwater gliders: an overview and prospect[J]. Journal of Unmanned Undersea Systems, 2018, 26(2): 89-106
[12] 薛冬阳. 水下滑翔机编队协调控制与不确定性研究[D]. 天津: 天津大学, 2017.
XUE Dong-yang. Research on coordination control and certainty of underwater glider formation[D]. Tianjin: Tianjin University, 2017.
[13] https://www3.mbari.org/aosn/.
[14] https://www3.mbari.org/muse/intro.htm/.
[15] https://www3.mbari.org/aosn/MontereyBay2003/.
[16] RAMP S R, DAVIS R E, LEONARD N E, et al. Preparing to predict: the second autonomous ocean sampling network (AOSN-II) experiment in the Monterey Bay[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2009, 56(3-5): 68-86
[17] BALTES B, RUDNICK D, CROWLEY M, et al. Toward a US IOOS underwater glider network plan: part of a comprehensive subsurface observing system[J]. DC: US Integrated Ocean Observing System Program Office, 2014: 54
[18] 俞建成, 刘世杰, 金文明等. 深海滑翔机技术与应用现状[J]. 工程研究-跨学科视野中的工程, 2016, 8(2): 208-216
YU Jian-cheng, LIU Shi-jie, JIN Wen-ming. Technology and application status of deep sea gilder[J]. Journal of Engineering Studies, 2016, 8(2): 208-216
[19] TESTOR P, MORTIER L, KARSTENSEN J, et al. EGO: towards a global glider infrastructure for the benefit of marine research and operational oceanography[J]. Mercator Ocean-CORIOLIS Quarterly Newsletter, 2012, 15(45): 12-15
[20] PATTIARATCHI C, WOO L M, THOMSON P G, et al. Ocean glider observations around Australia[J]. Oceanography, 2017, 30(2): 90-91
[21] LI S, WANG S, ZHANG F, et al. Constructing the three-dimensional structure of an anticyclonic eddy in the South China Sea using multiple underwater gliders[J]. Journal of Atmospheric and Oceanic Technology, 2019, 36(12): 2449-2470
[22] SHU Y, CHEN J, LI S, et al. Field-observation for an anticyclonic mesoscale eddy consisted of twelve gliders and sixty-two expendable probes in the northern South China Sea during summer 2017[J]. Science China Earth Sciences, 2019, 62(2): 451-458
[23] https://www.sohu.com/a/345692319_100122948.
[24] https://baijiahao.baidu.com/s?id=1657483168283053505&wfr=spider&for=pc.
[25] RICE J A. US Navy Seaweb development[C]. Second Workshop on Underwater Networks. DBLP, 2007.
[26] DAVIS R, BAUMGARTNER M, COMEAU A, et al. Tracking whales on the Scotian Shelf using passive acoustic monitoring on ocean gliders[C]. OCEANS 2016 MTS/IEEE Monterey, IEEE, 2016.
[27] http://www.cas.cn/yx/201809/t20180926_4664805.shtml.