为实现长航程、复杂海洋环境中航向高保持能力,本文提出一种高升阻比、分布式推进的新型大翼展水下无人航行器。针对设计目标,基于模块化设计思想,采用仿生构型,完成了大翼展推进与滑翔混合驱动航行器的总体设计,给出了浮力调节系统、重心调节系统、滑翔翼翼型与主尺度、推进器选型及布局等核心单元设计。为提高航行器的生存能力,航行器采用多舱室独立设计及应急抛载单元。基于有限元软件对航行器中耐压壳体进行强度、与刚度的数值与算与分析,结果表明满足规范要求,满足水下1000 m工作要求。本文所提出的分布式滑翔与推进混合驱动滑翔机的设计理念,具有大翼展高升阻比特性,减小滑翔角,满足长航程要求,解决了目前水下航行器航向改变响应速度慢,无法突破导中尺度涡的现象。
In order to realize the high heading capacity in the long range and complex marine environment, this paper proposes a new type of large wingspan unmanned underwater vehicle with high lift resistance and distributed propulsion. Aiming at the design goal, based on the modular design idea and adopting the bionic configuration, the overall design of the large-wing propulsion and gliding hybrid-driven aircraft is completed, and the buoyancy regulation system, the center of gravity adjustment system, the gliding wing type and the main scale, and the propulsion are given. Core unit design such as device selection and layout. In order to improve the survivability of the aircraft, the aircraft adopts multi-chamber independent design and emergency throwing unit; based on the finite element software, the numerical value and calculation and analysis of the strength and stiffness of the pressure-resistant casing in the aircraft, the results show that the requirements are met., to meet the underwater 1000 m working requirements. The design concept of the distributed gliding and propulsion hybrid drive glider proposed in this paper has the characteristics of large wing extension and high lift-to-drag ratio, reducing the glider angle and meeting the requirements of long range. It solves the problem that the current underwater vehicle change direction is slow and cannot be broken. The phenomenon of guiding mesoscale vortices.
2020,42(12): 29-35 收稿日期:2019-10-15
DOI:10.3404/j.issn.1672-7649.2020.12.006
分类号:U674.38
基金项目:水下机器人技术重点实验室研究基金资助(61422150307)
作者简介:凌宏杰(1986-),男,助理研究员,研究方向为水下机器人设计及水动力性能
参考文献:
[1] 宋方希. 基于CFD的混合驱动水下航行器外形研究[D]. 天津: 天津大学, 2012.
[2] 金春凤, 吴璟. 一种混合驱动小型自主水下机器人设计[J]. 现代制造技术与装备, 2017(11): 93-95
[3] 蒋新松. 水下机器人[M]. 辽宁科学技术出版社, 2000.
[4] 罗伟林, 吕文靖. 水下机器人型线自动优化设计[C]// 中国造船工程学会优秀学术. 2014.
[5] 孙端晨, 卢曦. 基于图谱设计方法的水下机器人螺旋桨设计方法[J]. 电子科技, 2017, 30(1): 147-149
[6] 李志伟, 崔维成. 水下滑翔机水动力外形研究综述[J]. 船舶力学, 2012, 16(7): 829-837
[7] 诸敏. 水下滑翔机设计优化与运动分析[D]. 杭州: 浙江大学, 2007.
[8] 张奇峰, 俞建成, 唐元贵. 水下滑翔机器人运动分析与载体设计[J]. 海洋工程, 2006, 24(1): 74-78
[9] 陈刚. 大浮力驱动水下滑翔机特性研究[D]. 中国舰船研究院, 2014.
[10] 王金强, 王聪, 魏英杰, 等. 飞翼式混合驱动水下滑翔机水动力与运动特性研究[J]. 兵工学报, 2018, 39(8)
[11] 武建国, 张宏伟. 小型自主水下航行器尾舵设计与研究[J]. 海洋技术学报, 2009, 28(3): 5-8