对一种流线型高速ROV导管螺旋桨和槽道螺旋桨的水动力性能进行仿真分析,得到2种螺旋桨的水动力特性曲线。将螺旋桨的推力和ROV的阻力进行对比计算,验证了流线型高速ROV设计的可行性。在敞水下,仿真得到导管螺旋桨推力、扭矩及效率曲线,并与图谱曲线对比,证明了数值仿真的可行性。在静水下,计算了不同转速时槽道螺旋桨的推力性能,得出推力与转速平方对应的曲线。在不同航速下,计算了槽道螺旋桨一定转速时对应的推力和扭矩,发现在一定航速下槽道螺旋桨失去效率。通过压力云图的分析看出,当流速增大时,在高速ROV表面产生负向的压力使整个螺旋桨的推力减小。通过数值模拟得到的结果,具有工程实用价值,为后续的运动控制打下基础。
Based on the structural appearance of a streamlined High-Speed ROV, the hydrodynamic performance of the ducted propeller and the channel propeller was simulated by computational fluid dynamics software. By compared the thrust of the propellers with the resistance of the high speed ROV, the feasibility of the design of the streamline ROV design is verified. Under the open water, the thrust, torque and efficiency curves of the ducted propeller were compared with the spectrum curves, which proves the feasibility of numerical simulation. Under static water, the thrust performance of the channel propeller at different speeds was calculated, and the curve corresponding to the thrust and the square of the speed was plotted. At different flow rates, the corresponding thrust and torque were calculated for a certain speed of the channel propeller, and it was found that the channel propeller lost efficiency at a certain flow rate. Through the analysis of the pressure cloud map, the results show that when the flow velocity increases, a negative pressure is generated on the surface of the High-Speed ROV, so that the thrust of the entire propeller is reduced. The results obtained from numerical simulation have practical value in engineering and lay a foundation for the follow-up motion control.
2020,42(12): 41-46 收稿日期:2019-12-10
DOI:10.3404/j.issn.1672-7649.2020.12.008
分类号:U664.34
基金项目:国家高技术发展研究计划(2015AA09A112)
作者简介:潘昊东(1990-),男,硕士研究生,研究方向为水下潜水器结构
参考文献:
[1] 王国强, 盛振邦. 船舶推进[M]. 北京: 国防工业出版社, 1985.
[2] 丁一文. 水下潜器系统中导管螺旋桨水动力性能及其梢涡变化对桨叶推力特性的影响[D]. 广州: 华南理工大学, 2018.
DING Yi-wen, Hydrodynamic performance of duct propeller and influence of tip vortex variation on thrust characteristics of propeller blades in underwater submersible system[D]. Guangzhou: South China University of Technology, 2018.
[3] 吴家鸣, 廖贯宇, 赖宇锋, 等. 导管剖面设计对导管螺旋桨水动力特性的影响[J]. 舰船科学与技术, 2017, 39(11): 38-43
WU Jia-ming, LIAO Guan-yu, LAI Yu-feng, et al. The influence of duct profile design on hydrodynamic characteristics of ducted propeller[J]. Ship Science and Technology, 2017, 39(11): 38-43
[4] 刘辉, 代燚, 冯榆坤, 等. 船舶艏侧推器推力减缩试验与数值计算研究[J]. 中国造船, 2017, 58(4): 1-13
LIU Hui, DAI Yi, FENG Yu-kun, et al. Experimental measurement and numerical simulation of thrust reduction for bow thruster[J]. Shipbuilding of China, 2017, 58(4): 1-13
[5] SAUNDERS A., NAHON M.. The effect of forward vehicle velocity on through-body AUV tunnel thruster performance[C]. Proceedings of Oceans 2002 Conference, MTS/IEEE, Biloxi, MI, USA.
[6] 谷海涛, 林扬, 胡志强. 带槽道桨水下机器人阻力特性的数值分析[J]. 微计算机信息, 2007, 23(5-2): 227-229
GU Hai-tao, LIN Yang, HU Zhi-qiang. Numerical analysis on the resistance of autonomous underwater vehicle with tunnel thruster[J]. Microcomputer Information, 2007, 23(5-2): 227-229
[7] 姚震球, 高慧, 杨春蕾. 螺旋桨三维建模与水动力数值分析[J]. 船舶工程, 2008, 30(6): 23-26
YAO Zhen-qiu, GAO Hui, YANG Chun-lei. 3D modeling and numerical analysis for hydrodynamic force of propeller[J]. Ship Engineering, 2008, 30(6): 23-26
[8] ALISTAIR Palmer, GRANT E. Hearn, PETER Stevenson. Experimental testing of an autonomous underwater vehicle with tunnel thrusters[C]. First International Symposium on Marine Propulsors. June 2009.