设计了一种用于AUV自主回收的捕获式回收机构。以回收过程中声光导引精度及AUV自主航行精度为设计输入,设计捕获式回收机构。研究导向机构开角及导向杆长度对AUV对接受力影响,并分析2种回收机构外形方案对于AUV航行阻力影响。经过仿真及试验验证,回收机构动作成功率大于80%,回收机构对AUV阻力影响小于9%。
A capture and recovery mechanism for Autonomous recovery of AUV (Autonomous Underwater Vehicles) is designed. The acquisition recovery mechanism is designed based on the acoustic-optic guidance accuracy and AUV autonomous navigation accuracy in the recovery process. The force of AUV docking is studied with the open angle and the length of the guide Rod, and the influence of two configuration schemes of the recovery mechanism on the navigation resistance of AUV is analyzed. The simulation and experimental results show that the success rate of the recovery mechanism more than 80%, and the impact of the recovery mechanism on the AUV resistance is less than 9%.
2020,42(12): 52-57 收稿日期:2019-02-28
DOI:10.3404/j.issn.1672-7649.2020.12.010
分类号:TB69
基金项目:中国科学院国防科技创新基金资助项目(CXJJ-17-M130);海军十三五装备预研项目(3020605040302);中科院装备预研联合基金资助项目(6141A01061601)
作者简介:白桂强(1993-),男,博士研究生,主要从事群海洋机器人智能协同作业研究
参考文献:
[1] ALLEN B, AUSTIN T, FORRESTER N, et al. Autonomous docking demonstrations with enhanced REMUS Technology[C]//Oceans 2006. USA: IEEE, 2006: 1–6.
[2] MCEWEN R S, HOBSON B W, MCBRIDE L, et al. Docking control system for a 54-cm-diameter(21-in) AUV[J]. IEEE Journal of Oceanic Engineering, 2009, 33(4): 550-562
[3] KAWASAKI T, FUKASAWA T, NOGUCHI T, et al. Development of AUV marine bird with underwater docking and recharging system[C]//The International Workshop on Scientific Use of Submarine Cables and Related Technologies. USA: IEEE, 2003: 166-170.
[4] SINGH H, BELLINGHAM J G, HOVER F, et al. Docking for an autonomous ocean sampling network[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 498-514
[5] 曹和云, 倪先胜, 何利勇, 等. 国外潜载UUV布放与回收技术研究综述[J]. 中国造船, 2014, 55(2): 200-208
[6] 燕奎臣, 吴利红. AUV水下对接关键技术研究[J]. 机器人, 2007, 29(03): 267-273
[7] SARDA E, DHANAK M. Unmanned recovery of an AUV from a surface platform manuscript, oceans '13 MTS/IEEE San Diego[C]// Oceans. San Diego, 2014: 3829-3836.
[8] SARDA E, DHANAK M. Concept for a usv-based autonomous launch and recovery system[C]// Launch and Recovery. 2015.
[9] PISKURA J C, PURCELL M, STOKEY R, et al. Development of a robust line capture, line recovery (LCLR) technology for autonomous docking of AUVs[C]// Oceans. IEEE, 2016: 1-5.
[10] DAN M L, JACOBSON J, HARDY M. Autonomous Inspection Of Undersea Structures[J]. Sea Technology, 2014, 55(4): 39-41
[11] 陈强. 水下无人航行器[M]. 北京: 国防工业出版社, 2014. 240-241.
[12] 王贵一. 橡胶与金属摩擦系数的测定及意义[J]. 特种橡胶制品, 1992(2): 50-53
[13] 陈强. 水下无人航行器[M]. 北京: 国防工业出版社, 2014. 47-48.
[14] GQ Bai, HT Gu. V-shaped wing design and hydrodynamic analysis based on moving base for recovery AUV[C]//WRC 2018, BeiJing: IEEE, 2018.
[15] 方子帆, 吴建华. 钢丝绳类索结构模型的动力学仿真研究[J]. 起重运输机械, 2009(2): 71-75
[16] 陈文革, 黄铁侠. 激光雷达测量海水光学水质参数[J]. 华中科技大学学报, 1997(5): 71-73