随着海洋观探测技术的发展和日趋成熟,单一水下无人潜航器的应用已不能满足广域数据采集或军事探测任务的需求,因此,水下无人潜航器的编队协作成为发展的必然趋势。水下滑翔机作为一种依靠浮力驱动的新型水下无人航行器,具有广泛的军民应用前景。然而,在受到外界攻击或强气象条件扰动时,水下滑翔机编队必须进行动态变换以实现稳定构型,因此本文针对水下滑翔机编队在强扰动环境下多种构型的稳定性进行分析。首先,对目前国内外水下滑翔机编队应用的现状进行回顾,并介绍水下滑翔机的稳定性研究进展。其次,考虑编队队形的动态变化,提出一种基于复杂网络理论的稳定性评估方法,采用领航-跟随者对编队分别建立有无扰动下的运动学模型。最后采用实例分析,分别进行3种水下滑翔机编队构型稳定性的研究,验证了不同编队构型在强扰动环境下的稳定性。
With the development and maturity of ocean observation and detection technology, the application of single underwater unmanned vehicle can no longer meet the needs of wide area data acquisition or military detection tasks. The formation cooperation of underwater unmanned vehicles has become an inevitable trend of development. As a new type of underwater unmanned vehicle driven by buoyancy, underwater glider has a wide range of military and civilian applications. However, when disturbed by external attacks or strong meteorological conditions, the formation of underwater gliders must be dynamically adjusted to achieve a stable configuration. Therefore, the stability of various configurations of underwater gliders in a strong disturbance environment is analyzed in this paper. First of all, a review of application about multiple underwater gliders is introduced. Secondly, considering the dynamic change of formation formation, a stability evaluation method based on complex network theory is proposed. Then, the kinematics model of formation with or without disturbance is established based on leader-follower method. Finally, the stability of three underwater glider formation configurations is studied by case analysis, which verifies the stability of different formation configurations in strong disturbance environment.
2020,42(12): 67-71 收稿日期:2020-08-05
DOI:10.3404/j.issn.1672-7649.2020.12.013
分类号:TP249
基金项目:国家重点研发计划(2016YFC0301100,2017YFC0305902,2019YFC0311803)资助项目;国家自然科学基金优秀青年科学基金资助项目(51722508);青年科学基金资助项目(11902219);天津市自然科学基金资助项目(18JCQNJC05100,18JCJQJC46400);“鳌山人才”培养计划(2017ASTCP-OS05,2017ASTCP-OE01);**预研教育部联合基金资助项目(6141A02011906-1);山东省支持青岛海洋科学与技术试点国家实验室重大科技专项(2018SDKJ0205)
作者简介:张润锋(1993-),男,博士研究生,研究方向为水下滑翔机编队控制
参考文献:
[1] 沈新蕊, 王延辉, 杨绍琼, 等. 水下滑翔机技术发展现状与展望[J]. 水下无人系统学报, 2018(2): 89-106
SHEN Xin-rui, WANG Yan-hui, YANG Shao-qiong, et al. Development status and prospect of underwater glider technology[J]. Journal of underwater unmanned systems, 2018(2): 89-106
[2] FRATANTONI D M, HADDOCK S H D. Introduction to the autonomous ocean sampling network (AOSN-II) program[J]. Deep Sea Research Part II Topical Studies in Oceanography, 2009, 56(3-5): 61
[3] BRISCOE M G, MARTIN D L, MALONE T C. Evolution of regional efforts in international GOOS and U. S. IOOS[J]. Marine Technology Society Journal, 2008, 42(3): 4-9
[4] 常虹, 薛桂芳, Proelss Alexander, 等. 欧洲水下滑翔机发展应用现状及其法律规制——对中国借鉴意义之思考[J]. 中国海商法研究, 2012(1): 109-114
[5] 聂卫东, 马玲, 张博, 等. 浅析美军水下无人作战系统及其关键技术[J]. 水下无人系统学报, 2017(5): 310-318
NIE Wei-dong, MA Ling, ZHANG Bo, et al. Analysis on U. S. underwater unmanned combat system and its key technologies[J]. Journal of Underwater Unmanned Systems, 2017(5): 310-318
[6] Pattiaratchi C. ANFOG: Australian National Facility for Ocean Gliders[Z]. 2007.
[7] 薛冬阳. 水下滑翔机编队协调控制与不确定性研究[D]. 天津: 天津大学, 2017.
XUE Dong-yang. Coordinated control and uncertainty study of underwater glider fleet[D]. Tianjin: Tianjin University, 2017.
[8] SHU Ye-qiang, CHEN Ju, LI Shuo, et al. Field-observation for an anticyclonic mesoscale eddy consisted of twelve gliders and sixty-two expendable probes in the northern South China Sea during summer 2017[J]. Science China Earth Sciences, 2018, 10(62): 451-458
[9] LI Shu-feng, WANG Shu-xin, ZHANG Fu-min, et al. Constructing the three-dimensional structure of an anticyclonic eddy in the South China Sea using multiple underwater gliders[J]. Journal of Atmospheric and Oceanic Technology, 2019, 36(12)
[10] ZHANG Run-feng, YANG Shao-qiong, WANG Yan-hui, et al. Regional ocean current field construction based on an empirical bayesian kriging algorithm using multiple underwater gliders[J]. Journal of Coastal Research, 2020, 99(sp1): 41-47
[11] 牛文栋. 混合驱动水下滑翔机稳定性控制与路径规划研究[D]. 天津: 天津大学, 2017.
NIU Wen-dong. Study on stability control and path planning of hybrid underwater glider[D]. Tianjin: Tianjin University, 2017.
[12] 赵宝强, 王晓浩, 姚宝恒, 等. 水下滑翔机李雅普诺夫稳定性分析[J]. 哈尔滨工程大学学报, 2015, 36(1): 83-87
[13] WANG Xiao-hong, ZHANG Yuan, WANG Li-zhi, et al. Robustness evaluation method for unmanned aerial vehicle swarms based on complex network theory[J]. Chinese Journal of Aeronautics, 2019, 33(1)