自主水下航行器(Autonomous Underwater Vehicle,AUV)是一种可以根据预设任务,在水下自主航行的无人潜水器,其作为移动测量平台逐渐被应用于海洋环境监测、水下目标识别、水底地形探测等领域。由于AUV平台较小,其自噪声严重制约搭载于平台的声呐系统性能,如何有效控制AUV的自噪声,对于平台声呐系统实现最佳性能具有重要实际意义。AUV的自噪声主要由航行器舵机等产生的机械噪声、螺旋桨噪声和水动力噪声几部分组成。本文通过AUV平台与声呐系统一体化控噪设计,利用机械降噪、隔振材料、智能控制等手段,对AUV进行系统性噪声控制。通过室内和湖上实验,测试平台不同部件、不同工况下的噪声特性,以及降噪效果。搭载声呐系统的平台湖上自噪声测量试验结果表明,在典型平均航速为3 kn情况下,平台自噪声1 kHz以上频段可控制在80 dB以下。
Autonomous Underwater Vehicle (AUV) is an unmanned submersible that can navigate autonomously under water according to preset tasks. As a mobile measurement platform, it is gradually being used in marine environment monitoring, underwater target recognition, underwater terrain detection and other fields. Since the AUV is small, its self-noise severely restricts the performance of the sonar system mounted on the platform. How to effectively control the self-noise of the AUV is of great practical significance for the platform sonar system to achieve the best performance. The self-noise of AUV is mainly composed of mechanical noise generated by steering gear, propeller noise and hydrodynamic noise. In this paper, through the integrated noise control design of the AUV and the sonar system, the use of mechanical noise reduction, vibration isolation materials, intelligent control and other means to systematically control the AUV. Through indoor and lake experiments, we tested the noise characteristics and the noise reduction effect of different components of the platform, under different working conditions; finally carried out the self-noise measurement test on the AUV equipped with sonar system. The experimental results showed that the platform self-noise above 1 kHz can be controlled below 80 dB with typical average speed of 3 kn.
2020,42(12): 146-149 收稿日期:2020-08-13
DOI:10.3404/j.issn.1672-7649.2020.12.029
分类号:TB52;TB53;TP273
基金项目:NSFC-浙江两化融合联合基金资助项目(U1709204);国家重点研发计划课题(2017YFC0305905)
作者简介:张明(1986-),男,博士,工程师,研究方向为水下智能装备
参考文献:
[1] ALLEN B, STOKEY R, AUSTIN T, et al. REMUS: a small, low cost AUV; system description, field trials and performance results[C]. Oceans conference, Halifax, 1997: 994–1000.
[2] CRUZ N, MATOS A. The MARES AUV, a modular autonomous robot for environment sampling[C]. Oceans conference, Quebec City, 2008: 1–6.
[3] MOLINE M A, BLACKWELL S M, VON Alt C, et al. Remote environmental monitoring units: an autonomous vehicle for characterizing coastal environments[J]. Journal of Atmospheric and Oceanic Technology, 2005, 22(11): 1797-1808
[4] ZHANG Ming, XU Yuan-xin, LI Bo, et al. A modular autonomous underwater vehicle for environmental sampling: system design and preliminary experimental results[C]. Oceans conference, Taipei, 2014: 1–5.
[5] ZHANG Y, BELLINGHAM J G, GODIN M, et al. Using an autonomous underwater vehicle to track the thermocline based on peak-gradient detection[J]. IEEE Journal of Oceanic Engineering, 2012, 37(3): 544-553
[6] YOKOTA S, KIM K, IMASATO M, et al. Development and sea trial of an autonomous underwater vehicle equipped with a sub-bottom profiler for surveying mineral resources[C], IEEE/OES Autonomous Underwater Vehicles, Tokyo, 2016, 81–84.
[7] ZHANG Ming, XU Wen, and XU Yuan-xin. Inversion of the sound speed with radiated noise of an autonomous underwater vehicle in shallow water waveguides[J]. IEEE Journal of Oceanic Engineering, 2016, 41(1): 204-216
[8] 段勇, 郭君, 周凌波. 隔振技术在水下航行器推进轴系振动控制中的应用[J]. 水下无人系统学报, 2018, 26(1): 70-77
DUAN Yong, GUO Jun, ZHOU Ling-bo. Application of virbration isolation technology to vibration control of undersea vehicle propulsion shafting[J]. Journal of unmaned undersea systems, 2018, 26(1): 70-77
[9] 郭凯红, 李健, 李星升. 水下航行器推进系统机械噪声与辐射噪声相关性分析及方法研究[J]. 机械管理开发, 2010, 25(6): 114-116
GUO Kai-hong, LI Jian, LI Xing-sheng. The relevance study between mechanical noise and radioactive noise of the propulsion system of undersea vehicles[J]. Mechanical management and development, 2010, 25(6): 114-116
[10] 陈健松. 某水下航行体自噪声特性研究[D]. 西安: 西北工业大学, 2002.
CHEN Jian-song. The study of self-noise characteristic of one under-water vehicle[D]. Xi'an: Northwestern Polytechnical University, 2002.