无人水下航行器(UUV)动力电池是UUV技术发展的主要瓶颈之一。本文对UUV的动力电池进行分类,对现有UUV动力电池的优缺点、研究进展、存在问题以及解决方法进行综述。针对UUV对动力电池的中长期要求,对未来UUV动力电池发展趋势进行展望。
The power battery for unmanned underwater vehicles (UUV) has been an important research point since the vehicles were invented. This article classifies UUV power batteries, and summarizes the advantages and disadvantages, research progress, existing problems and solutions of existing UUV power batteries. Aiming at the mid-to-long term requirements of UUV for power batteries, prospects for the future development of UUV power batteries
2020,42(12): 155-158 收稿日期:2020-08-13
DOI:10.3404/j.issn.1672-7649.2020.12.031
分类号:TM912.9
作者简介:代化(1979-),男,高级工程师,从事锂电池技术研究
参考文献:
[1] http://en.wikipedia.org/wiki/Remotely operated underwater vehicle.
[2] http://en.wikipedia.org/wiki/Autonomousunderwater vehicle.
[3] http://en.wikipedia.org/wiki/Underwater gliders.
[4] COHAN S. Trends in ROV development[J]. Mar Technol Soc J, 2008, 42(1): 38-43
[5] CURTIN TB, CRIMMINS DM, JOSEPH C, et al. Autonomous underwater vehicles: trends and transformations[J]. Mar Technol Soc J, 2009, 36(3): 65-75
[6] WANG X, SHANG J, LUO Z, et al. Reviews of power systems and environmental energy conversion for unmanned underwater vehicles[J]. Renewable and Sustainable Energy Reviews, 2012, 16: 1958-1970
[7] 王晓武, 林志民, 崔立军. 无人潜水器及其动力系统技术发展现状及趋势分析[J]. 舰船科学技术, 2009, 31(8): 31-34
WANG X, LIN Z, CUI L. Analysis of technology status and development trend for unmanned underwater vehicle and its propulsion system[J]. Ship Science and technology, 2009, 31(8): 31-34
[8] CANCILLIERE F M. Advanced UUV technology[R]. Rhode Island: NUWC Division Newport, 1994: 147-151.
[9] STØRKERSEN N, HASVOLD Ø, Power sources for AUVs[R]. Proceedings of the Science and Defence Conference. Brest, France, October 19, 2004.
[10] http://www.sdle.co.il[EB/OL].
[11] 蔡年生. UUV动力电池现状及发展趋势[J]. 鱼雷技术. 2010, 18(2): 81-87.
CAI N. Review of power battery for UUV with development trends[J]. 2010, 18(2): 81-87.
[12] BRADLEY AM, FEEZOR MD. Power systems for autonomous underwater vehicles[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 526-538
[13] HASVOLD Ø, STØRKERSEN NJ, FORSETH S, et al. Power sources for autonomous underwater vehicles[J]. Journal of Power Sources, 2006, 162: 935-942
[14] TOSHIO M, SHINJI I, KAZUHISA Y, et al. Development of fuel cell AUV URASHIMA[J]. Mitsubishi Heavy Industries Ltd. Technical Review, 2004, 41(6): 1-5
[15] TSUKIOKA S, AOKI T, TAMURA K, et al. Development of a long range Autonomous Underwater Vehicle AUV-EX1. In Underwater technology[R]. Proceedings of the 2000 international symposium. 2000: 254-258.
[16] www.fuelcelltoday.com.
[17] JIANG W, CHAO C, HONG Z, et al. Study on well-todrag efficiency of PEMFC powered glider[R]. The 4th international conference of industrial electronics and applications (ICIEA). 2009: 1970-1975.
[18] http://auvac.Org/research/publications.
[19] BURKE AA, CARREIRO LG. System modeling of an Air independent Solid Oxide Fuel Cell System for Unmanned Undersea Vehicles[J]. Journal of Power Sources, 2006, 158(1): 428-435
[20] http://www.fuelcelltoday.com/news-events/news-archive/2012/may/nextech-materials-awarded-office-of-naval-research-contract-to-develop-uuv-fuel-cell-system[EB/OL].
[21] LAKEMANA JB, ROSE A, POINTON KD, et al. The direct borohydride fuel cell for UUV propulsion power[J]. Journal of Power Sources, 2006, 162: 765-772
[22] J MA, CHOUDHURY NA, SAHAI Y. A comprehensive review of direct borohydride fuel cells[J]. Renewable and Sustainable Energy Reviews, 2010, 14: 183-199
[23] LUO N, MILEY GH, KIM K. NaBH4/H2O2 fuel cells for air independent power systems[J]. Journal of Power Sources, 2008, 185: 685-690
[24] http://www.fuelcellseminar.com/.
[25] CAI Q, BRETT DJ, BROWNING D, et al. A sizing-design methodology for hybrid fuel cell power systems and its application to an unmanned underwater vehicle[J]. Journal of Power Sources, 2010, 195: 6559-6569